
 

 

A COMBINED FEEDBACK CONTROLLER DESIGN FOR ACTIVE 

VIBRATION SUPPRESSION 
 

 

 

 

 

 

 

 

 

 

A Dissertation 

Presented to 

The Academic Faculty 

 

 

 

 

by 

 

 

 

Pavithra Manghaipathy 

 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Masters Thesis in the 

School Of Aerospace Engineering 

 

 

 

 

 

 

 

Georgia Institute of Technology 

May 2018 

 

 

COPYRIGHT © 2018 BY PAVITHRA MANGHAIPATHY 



ii 

 

 

A COMBINED FEEDBACK CONTROLLER DESIGN FOR ACTIVE 

VIBRATION SUPPRESSION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Approved by: 

 

Dr. Sathyanaraya Hanagud, Advisor 

School of Aerospace Engineering 

Georgia Institute of Technology 

 

Dr. Eric Feron 

School of Aerospace Engineering 

Georgia Institute of Technology 

 

Dr. George Kardomateas 

School of Aerospace Engineering 

Georgia Institute of Technology 

 

 

 

Date Approved:  April 23, 2018 

 

 



iii 

 

ACKNOWLEDGEMENTS 

I would sincerely like to thank my advisor Dr. Sathyanaraya Hanagud, for all his support, time and 

guidance throughout this research. His valuable knowledge and direction helped me focus and 

understand a lot of the concepts and see the potential uses of the data. I would also like to thank 

Dr. Eric Feron for teaching me the bases for control theory in the frequency domain. I would like 

to extend my thanks to Dr. George Kardomateas for his course and teaching me about modelling 

dynamic structures. Lastly and most importantly, I would like to sincerely thank my parents for 

their constant love and support without which I would not be where I am today.  

 

 

  



iv 

 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ........................................................................................................... iii 

LIST OF TABLES ....................................................................................................................... viii 

LIST OF FIGURES ....................................................................................................................... xi 

Summary ...................................................................................................................................... xvi 

1. Introduction ............................................................................................................................. 1 

2. Background .............................................................................................................................. 3 

2.1. Passive Controllers ........................................................................................................... 3 

2.2. Active Controllers ............................................................................................................ 4 

3. Scope of Thesis ........................................................................................................................ 7 

4. Dynamics and Controls ........................................................................................................... 8 

4.1. Acceleration and positive position feedback ..................................................................... 11 

4.1.1. Formulation of Positive Position Feedback (PPF) Controller .................................... 11 

4.1.1.2. Step Input Response ............................................................................................ 13 

4.1.1.3. Step Input Response ............................................................................................ 14 

4.1.1.4. Perturbations from coincident closed loop frequency ......................................... 15 



v 

 

4.1.1.5. Energy Analysis .................................................................................................. 16 

4.1.2. Formulation of Acceleration Feedback Controller ..................................................... 17 

4.1.2.2. Step Input Response ............................................................................................ 19 

4.1.2.3. Bode Plots ........................................................................................................... 21 

4.1.2.4. Perturbations........................................................................................................ 23 

4.1.2.5. Energy Analysis .................................................................................................. 23 

4.1.3. Formulation of Velocity Feedback Controller ............................................................ 24 

4.1.3.2. Step Input Response ............................................................................................ 25 

4.1.3.3. Bode Plots ........................................................................................................... 27 

4.1.3.4. Perturbations........................................................................................................ 30 

4.1.3.5. Energy Analysis .................................................................................................. 30 

4.1.4. Formulation of Combined Acceleration and Positive Position Feedback (PPF) 

Controller .................................................................................................................................. 31 

4.1.4.2. Step Input Responses .......................................................................................... 33 

4.1.4.3. Bode Plots ........................................................................................................... 37 

4.1.4.4. Perturbations from coincident closed loop frequency ......................................... 41 



vi 

 

4.1.4.5. Energy Analysis .................................................................................................. 42 

4.2. Combined Acceleration and Velocity ................................................................................ 44 

4.2.1. Formulation of Acceleration and Velocity Feedback Controller ............................... 44 

4.2.2. Step Input Responses .................................................................................................. 46 

4.2.3. Bode Plots ................................................................................................................... 51 

4.2.4. Perturbations from coincident closed loop frequency ................................................ 58 

4.2.5. Energy Analysis .......................................................................................................... 59 

4.3. Combined Positive Position and Velocity Feedback ......................................................... 61 

4.3.1. Formulation of Positive Position (PPF) and Velocity Feedback Controller .............. 61 

4.3.2. Step Input Responses .................................................................................................. 62 

4.3.3. Bode Plots ................................................................................................................... 65 

4.3.4. Perturbations from coincident closed loop frequency ................................................ 69 

4.3.5. Energy Analysis .......................................................................................................... 70 

5. Comparison & Discussion ..................................................................................................... 72 

6. Conclusion ............................................................................................................................. 79 

Appendix A ................................................................................................................................... 82 



vii 

 

A.1. 1. Acceleration & PPF feedback with varying closed loop damping ratio ....................... 82 

A.1. 2 Acceleration & PPF feedback with varying α ratio........................................................ 86 

A.2 Acceleration & PPF feedback with varying perturbations ................................................. 91 

A.2.1.  Acceleration & velocity feedback with varying ratio α ................................................ 96 

A.3.1. Position & velocity plots .............................................................................................. 101 

References ................................................................................................................................... 106 

 

  



viii 

 

LIST OF TABLES 

Table 1: PPF Feedback Data for ζc, wc/ws and g for different ζf ................................................ 13 

Table 2: Gain and Phase Margins for Different ζf ........................................................................ 15 

Table 3: PPF Feedback Values for Different Perturbations .......................................................... 16 

Table 4: Controller Energy Required for PPF Feedback with Different Perturbations ................ 17 

Table 5: Acceleration Feedback Data for ζc, ωc/ωs and g for different ζf ................................... 18 

Table 6: Gain and Phase Margins for Different ζf ........................................................................ 21 

Table 7: Acceleration Feedback Values for Different Perturbations ............................................ 23 

Table 8: Controller Energy Required for Acceleration Feedback with perturbations .................. 23 

Table 9: Velocity Feedback Data for ζc, ωc/ωs and g for different ζf .......................................... 25 

Table 10: Gain and Phase Margins for Different ζf ...................................................................... 28 

Table 11: Velocity Feedback Values for Different Perturbations ................................................ 30 

Table 12: Controller Energy Required for Velocity Feedback only with perturbations ............... 30 

Table 13: Acceleration & PPF Feedback Data for ζc, wc/ws and g for different ζf and α=0.5 .... 32 

Table 14: Acceleration & PPF Feedback Data for ζc, ωf/ωs, ωc/ωs and g for different α with ζf=0.2

....................................................................................................................................................... 35 



ix 

 

Table 15: Gain and Phase Margins for Different ζf ...................................................................... 37 

Table 16: Gain and Phase Margins for Different α and ζf=0.2 ..................................................... 40 

Table 17: Acceleration & PPF Feedback Values for Different Perturbations .............................. 42 

Table 18: Energy Dissipated by the system .................................................................................. 42 

Table 19: Controller Energy Required for Different α ................................................................. 43 

Table 20: Controller Energy Required for α=0.1 with perturbations ........................................... 43 

Table 21: Acceleration + Velocity Feedback Data for ζc, wc/ws and g for different ζf .............. 46 

Table 22: Acceleration & Velocity Feedback Data for ζc, wc/ws and positive g for different α . 50 

Table 23: Settling Times, Gain and Phase Margin for Cases of Interest (Non infinite Gain and 

Phase Margins).............................................................................................................................. 52 

Table 24: Gain and Phase Margins for Different α ....................................................................... 56 

Table 25: Acceleration & Velocity Feedback Values for Different Perturbations ....................... 59 

Table 26: Energy Dissipated by the system .................................................................................. 60 

At this stage, we can conclude that focusing on positive gains ‘g’ will be more fruitful. Focusing 

on the controller energy requirements for different values of the ratio α, we have the following 

results. Table 27: Controller Energy Required for Different α ..................................................... 60 

Table 28: Controller Energy Required for α=0.3 with perturbations ........................................... 60 



x 

 

Table 29: PPF and Velocity Feedback Data for ζc, wc/ws and g for different ζf ......................... 62 

Table 30: PPF and Velocity Feedback Data for ζc, wc/ws and g for different α .......................... 64 

Table 31: Gain and Phase Margin for Different ζf ....................................................................... 66 

Table 32: Gain and Phase Margin for Different α ........................................................................ 67 

Table 33: PPF & Velocity Feedback Values for Different Perturbations ..................................... 69 

Table 34: Energy Dissipated by the system .................................................................................. 70 

Table 35: Controller Energy Required for Different α ................................................................. 70 

Table 36: Controller Energy Required for α=0.1 with perturbations ........................................... 71 

Table 37: Settling Times ............................................................................................................... 72 

 

  



xi 

 

LIST OF FIGURES 

Figure 1: Uniform Beam ................................................................................................................. 8 

Figure 2: PPF Feedback Step Response for ζf=0.1 ....................................................................... 14 

Figure 3: PPF Feedback Step Response for ζf=0.9 ....................................................................... 14 

Figure 4: Acceleration Feedback Step Response for ζf=0.1 ......................................................... 19 

Figure 5: Acceleration Feedback Step Response for ζf=0.9 ......................................................... 20 

Figure 6: Combined acceleration feedback step response ............................................................ 20 

Figure 7: Acceleration Feedback Step Response for ζf=0.1 ......................................................... 22 

Figure 8: Acceleration Feedback Step Response for ζf=0.9 ......................................................... 22 

Figure 9a: Velocity Feedback Step Response for ζf=0.1 g<0 ...................................................... 26 

Figure 10: Velocity feedback step response for negative g .......................................................... 27 

Figure 11: Velocity feedback step response for positive g ........................................................... 27 

Figure 12a: Velocity Feedback Bode Plot for ζf=0.1 g<0 ............................................................ 29 

Figure 13: Acceleration & PPF Feedback Step Response for ζf=0.1 ........................................... 33 

Figure 14: Acceleration & PPF Feedback Step Response for ζf=0.2 ........................................... 34 

Figure 15: Acceleration & PPF Feedback Step Response for ζf=0.3 ........................................... 34 



xii 

 

Figure 16: Acceleration & PPF Feedback Step Response for ζf=0.9 ........................................... 35 

Figure 17: Acceleration & PPF Feedback Step Response for ζf=0.2 and α=0.1 .......................... 36 

Figure 18: Acceleration & PPF Feedback Step Response for ζf=0.2 and α=0.9 .......................... 36 

Figure 19: Acceleration & PPF Feedback Bode Plot for ζf=0.1 ................................................... 38 

Figure 20: Acceleration & PPF Feedback Bode Plot for ζf=0.2 ................................................... 38 

Figure 21: Acceleration & PPF Feedback Bode Plot for ζf=0.3 ................................................... 39 

Figure 22: Acceleration & PPF Feedback Bode Plot for ζf=0.9 ................................................... 39 

Figure 23: Acceleration & PPF Feedback Bode Plot for ζf=0.2 and α=0.5 ................................. 40 

Figure 24: Acceleration & PPF Feedback Bode Plot for ζf=0.2 and α=0.6 ................................. 41 

Figure 25: Acceleration & PPF Feedback Bode Plot for ζf=0.2 and α=0.9 ................................. 41 

Figure 26: Acceleration & Velocity Feedback Step Response for ζf=0.1 g<0 ............................. 47 

Figure 27: Acceleration & Velocity Feedback Step Response for ζf=0.9 g<0 ............................. 47 

Figure 28: Acceleration & Velocity Feedback Step Response for ζf=0.1 g>0 ............................. 48 

Figure 29: Acceleration & Velocity Feedback Step Response for ζf=0.9 g>0 ............................. 48 

Figure 30: Acceleration & Velocity  feedback step response for negative g ................................ 49 

Figure 31: Acceleration & Velocity feedback step response for positive g ................................. 49 



xiii 

 

Figure 32: Acceleration & PPF Feedback Step Response for ζf=0.2 and α=0.1 .......................... 50 

Figure 33: Acceleration & PPF Feedback Step Response for ζf=0.2 and α=0.9 .......................... 51 

Figure 34: Acceleration & Velocity Feedback Bode Plots for ζf=0.1 g<0  α=0.5 ....................... 53 

Figure 35: Acceleration & Velocity Feedback Bode Plots for ζf=0.1 g>0 α=0.5 ........................ 54 

Figure 36: Acceleration & Velocity Feedback Bode Plots for ζf=0.9 g>0  α=0.5 ....................... 54 

Figure 37: Acceleration & Velocity Feedback Bode Plots for ζf=0.9 g<0 α=0.5 ........................ 55 

Figure 38: Acceleration & Velocity Feedback Bode Plots for ζf=0.1 g>0  α=0.1 ....................... 55 

Figure 39: Acceleration & Velocity Feedback Bode Plots for ζf=0.7 g<0 α=0.7 ........................ 56 

Figure 40: Acceleration and Velocity Feedback with Alpha = 0.1 .............................................. 57 

Figure 41: Acceleration and Velocity Feedback with Alpha = 0.8 .............................................. 57 

Figure 42: Acceleration and Velocity Feedback with Alpha = 0.9 .............................................. 58 

Figure 43: Acceleration and Velocity Feedback with Alpha = 1 ................................................. 58 

Figure 44: PPF & Velocity Feedback Step Response for ζf=0.1 .................................................. 63 

Figure 45: PPF & Velocity Feedback Step Response for ζf=0.9 .................................................. 63 

Figure 46: Position & Velocity Feedback combined step responses ............................................ 64 

Figure 47: PPF & Velocity Feedback Step Response for α =0.1 .................................................. 65 



xiv 

 

Figure 48: PPF & Velocity Feedback Step Response for α =0.9 .................................................. 65 

Figure 49: PPF & Velocity Feedback Bode Plot for ζf=0.1 ......................................................... 66 

Figure 50: PPF & Velocity Feedback Bode Plot for ζf=0.9 ......................................................... 67 

Figure 51: PPF & Velocity Feedback Bode Plot for α=0.1 .......................................................... 68 

Figure 52: PPF & Velocity Feedback Bode Plot for α=0.5 .......................................................... 68 

Figure 53: PPF & Velocity Feedback Bode Plot for α=0.6 .......................................................... 69 

Figure 54: Comparison of Settling Times ..................................................................................... 73 

Figure 55: Comparison of Settling Times (Closer Range) ........................................................... 74 

Figure 56: Combined Settling Times With varying feedback ratios ............................................ 74 

Figure 57: Combined Settling Times With varying feedback ratios (closer range) ..................... 75 

Figure 58: Comparing Controller Energy Required for different α .............................................. 76 

Figure 59: Controller Energy Required for perturbed solutions ................................................... 77 

Figure 60: Acceleration and Velocity Feedback with ζf =0.2 ζs =0.01 and α = 0.1 ..................... 96 

Figure 61: Acceleration and Velocity Feedback with ζf =0.2 ζs =0.01 and α = 0.2 ..................... 96 

Figure 62: Acceleration and Velocity Feedback with ζf =0.2 ζs =0.01 and α = 0.3 ..................... 97 

Figure 63: Acceleration and Velocity Feedback with ζf =0.2 ζs =0.01 and α = 0.4 ..................... 97 



xv 

 

Figure 64: Acceleration and Velocity Feedback with ζf =0.2 ζs =0.01 and α = 0.5 ..................... 98 

Figure 65: Acceleration and Velocity Feedback with ζf =0.2 ζs=0.01 and α = 0.6 ...................... 98 

Figure 66: Acceleration and Velocity Feedback with ζf =0.2 ζs=0.01 and α = 0.7 ...................... 99 

Figure 67: Acceleration and Velocity Feedback with ζf =0.2 ζs =0.01 and α = 0.8 ..................... 99 

Figure 68: Acceleration and Velocity Feedback with ζf =0.2 ζs =0.01 and α = 0.9 ................... 100 

Figure 69: Acceleration and Velocity Feedback with ζf =0.2 ζs =0.01 and α = 1 ...................... 100 

Figure 70: Position & Velocity Feedback Bode Plots and Step Response for ζf=0.1 ................ 101 

Figure 71: Position & Velocity Feedback Bode Plots and Step Response for ζf=0.2 ................ 101 

Figure 72: Position & Velocity Feedback Bode Plots and Step Response for ζf=0.3 ................ 102 

Figure 73: Position & Velocity Feedback Bode Plots and Step Response for ζf=0.4 ................ 102 

Figure 74: Position & Velocity Feedback Bode Plots and Step Response for ζf=0.5 ................ 103 

Figure 75: Position & Velocity Feedback Bode Plots and Step Response for ζf=0.6 ................ 103 

Figure 76: Position & Velocity Feedback Bode Plots and Step Response for ζf=0.7 ................ 104 

Figure 77: Position & Velocity Feedback Bode Plots and Step Response for ζf=0.8 ................ 104 

Figure 78: Position & Velocity Feedback Bode Plots and Step Response for ζf=0.9 ................ 105 

  



xvi 

 

SUMMARY 

To prevent failure due to fatigue, especially in high-performance aircraft, there is a significant 

amount of interest in vibration suppression methods with a special focus on active vibration control 

methods. This thesis demonstrates vibration controller designs, by using a combination of 

acceleration & positive position feedback (PPF), acceleration & velocity feedback and positive 

position feedback (PPF) & velocity feedback, along with smart actuators based on piezoelectric 

stacks in order to address the issue. While several feedback and controller methods exist, this 

previously unexplored design was chosen to emphasize the effects of two types of combined 

feedback over a single feedback. Noting the work by Caughey & Goh (1983) and Fanson (1984) 

for the controller design process, this thesis aims to perform a stability analysis and expand on the 

use of the method designed by Hanagud & de Noyer (1998); a control method which uses a single 

specified closed frequency and a preset closed loop damping ratio to control the damping. 

Therefore, the new research presented in this thesis includes the following:  

Study combinations of two feedbacks (Acceleration & Velocity, Position & Velocity and 

Acceleration & Position) to design controllers that yield a single closed loop frequency for 

specified closed loop damping ratio and a new solution technique of equating coefficients of the 

transfer function denominator.  

Modifying the design to include frequencies other than the single closed loop frequency by a 

perturbation method. The perturbation is about a single closed loop frequency ωf. 

Search for a design that uses minimum energy required by the controller to suppress and control 

vibrations.  
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Search for the best combination; Acceleration & Velocity, Position & Velocity or Acceleration & 

Position Feedback design.  
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1. INTRODUCTION  

It is known that vibrations can cause fatigue damage in high-performance aircraft. For example, 

there is a growing need for advanced vibration suppression to prevent buffet induced damage. 

While there have been significant efforts to study vibrations, the knowledge of these vibration 

studies is being used to design methods of suppressing vibration and increasing the lifespan of 

vehicles through active control. For example, in a study of tail buffet and fatigue cracks, Hanagud 

et. al [1] presented a design of a smart structure based actuator for vibration suppression. This was 

done after analyzing that buffet induced vibration of a vertical tail of a high-performance aircraft, 

F-15, that significantly increased maintenance costs of the twin vertical tail assembly. When 

considering space structures, Omidi et. Al [2] also pointed out that the most severe disturbances 

arise from resonant excitations. Omidi also noted that suppression of resonant modes affects the 

frequency response and lower the amplitude peak in the entire frequency domain. From those 

observations, it is clear that one can consider single and multi-mode vibration suppression 

methods. Therefore, with more understanding of vibration modes and sources in aerospace 

systems, vibration suppression methods offer a way to increase the life-span, decrease maintenance 

efforts and allow certain aircraft to meet the high maneuverability and performance requirements.  

With a growing need for vibration suppression in aerospace systems to avoid failure due to fatigue, 

there is currently a significant amount of focus on vibration control techniques for various classes 

of aircraft. First it is necessary to model the systems and evaluate natural frequencies, responses 

and design the control system. Aerospace structures can be treated as distributed parameter 

systems which imply that the structures contain a large number of nodes and controllers are chosen 
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to include important nodes within the bandwidth. As mentioned previously in Omidi et al. [2], 

choosing multi-modal or a single resonant mode both provide solutions for vibration suppression. 

One assumption for computational purposes is the use of Euler Bernoulli beam for bending which 

implies neglecting shear deformation effects and rotary inertia effects. With the equations of 

motions for multiple nodes, the vibration of the elements can be modeled, and this applies to a 

wide variety of systems. Sweigert and Forward’s work [3] in the Journal of Spacecraft   researched 

the effects of piezoelectric based electronic damping and observed the amplitudes of various 

modes on a cylindrical mast. While the focus was on the observation of how the amplitudes of 

modal vibration behave and how modes can combine to change the damping ratio, a key outcome 

from this study of modes was the idea of increasing damping by understanding different modes  

based on an analytical model  and damping loop analyses.  
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2. BACKGROUND 

2.1. Passive Controllers 

Vibration suppression techniques include both passive and active control. Mostly used passive 

vibration reduction is of two main types; absorber and damper. A passive absorber is added to the 

system to apply an equal and opposite force by the absorber itself. However, this method only 

works for very specific frequencies. The latter method, either by fluid damping, viscoelastic 

materials or tuned mass dampers as listed by Knipe [4] operates attenuating a damping force. Most 

have used systems with a damping coefficient in the range of 0.01 to 0.03. To implement and 

design passive vibration suppression methods, to increase the damping ratio by an order of 

magnitude. However, no such passive control material exists to facilitate this. A comparison of the 

two techniques performed by Wang [5] ; Bernstien [6] states that passive control is typically used 

for sound energy applications due to its impact range. Therefore while passive control methods 

have been used for successfully in the past, they have small operating ranges and limitations on 

efficiency due to the material properties at different frequencies and temperatures as demonstrated 

by Nashie et. Al in 1985. Since passive methods involve adding changes to the structure which in 

turn affects the dynamics and overall operation & maintenance cost and does not meet the required 

damping levels to be applied to high-performance of vehicles. With the F-15 aircraft, Bayon de 

Noyer [7] and even Roberts [8] note that passive technique to improve the response for the F-15 

consisted of reinforcing the fin assembly  with patches.   
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2.2.  Active Controllers  

One of the active vibration control includes feedback control such as position, velocity or 

acceleration wherein the selected quantities are measured and fed back. An early exploration of 

active vibration control was first started in the 1980s. At the time, the new idea for the specific 

application in airframes had an H∞ controller for higher harmonic control action. The work paved 

the way for further intensive studies on the method and feasibility, one such example was  by 

Hanagud and Obal [9] focused more on the active control design and implementation of the 

piezoelectrics and control architecture based on feedback. Hanagud and Babu [10] also started the 

work on smart structures in airframe vibration control through the use of piezoceramic sensors 

after the first known application of piezoceramics in vibration suppression by Olsen [11].  

There are several controller techniques available for active structural vibration control as seen 

through the review by Alkhatib and Golnaraghi [12] where the process for designing an active 

control system is examined in significant detail. There are several controller types to choose from 

and a few recent examples are listed as follows; such as the PID feedback controller (Prasad and 

Hanagud [13], Khot et al [14]), Velocity feedback control (Aoki et al [15]), H∞ and H2 output 

feedback control (Hanagud, Obal and Calise [9], Zhang et al [16] & Iorga, Baruh, Ursu [17] and  

Gosh et al [18] respectively), Acceleration feedback and sliding mode variable structure control 

(Z-c Qiu et al. [19]), LQR control with an IMSC base (Bhattacharya et al [20]) and Adaptive 

Control (for example using two PID controllers as proposed by Ma and Ghasemi-Nejhad [21]). 

With a focus on specifically distributed-parameter system control for aerospace structures, Bailey 

and Hubbard [22] used a cantilever beam model  with a PVF (Polyvinyl fluoride) active damper 



5 

 

mounted on the side  and observed transverse vibrations. It was noted that one could achieve linear 

or non-linear damping using either constant-gain or constant-amplitude controllers respectively.   

As stated by Chee et al [23], the most common mathematical models when it comes to piezoelectric 

actuators are linear yet, there still needs to be more work for various configurations, analytical 

models and for the development of robust control algorithms for both linear and nonlinear models. 

However, there is still a focus to master linear system and therefore a review of the various papers 

discussing the matter shows that Positive Position Feedback (PPF) seems to be the chosen 

controller for current endeavors in vibration control.  

A big advantage that has been mentioned by both Fanson, Goh and Caughey [24] and Wang [5] 

when it comes to PPF, is the lack of sensitivity to spillover. This implies that it is a better fit for 

higher frequencies as also explored by Periera et al’s stability analysis [25] and additionally does 

not destabilize with finite actuator dynamics. In addition, PPF is independent of controller damping 

ratio and requirements include low system frequency gain and resonant frequencies as stated by 

Mahmoodi et al [26].  Mahmoodi et al [26] also proposed a modified PPF Method (MPPF) to 

improve efficiency and prevent instability due to spillover, by implementing a resonant controller 

using collocated control systems. The method consisted of two parallel compensators; a second 

order filter for small damping and a first order for transient disturbances that make up an 

acceleration feedback [27]. The proposed PPF controller by Caughey and Fanson [24] based on 

modal displacement signals, maximizes damping of the concerned frequency range while 

maintaining stability.  

As listed above there are several actuators and sensors that can be used for vibration suppression. 

The working of the actuators can be simply described as delivering a force proportional to a voltage 
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input. With the feedback, the voltage that needs to be supplied to counteract the vibrations’ force 

will be fed into the actuator which imparts an appropriate amount of force. From Fanson [24] and 

Wang [5], it is clear from the above-listed sources that piezoelectric actuators and sensors are 

preferred due to their longevity, range of operating conditions, fast settling time and low power 

consumption. Bayon De Noyer [1] also discusses the Offset Piezoceramic Stack Actuator (OPSA) 

to increase damping ratio, with the corresponding cantilever beam FEM model and brings about 

the effect of placement of the actuators. Additionally, a report by Ezratty [28], uses the models to 

compare different cases of piezoelectric layers and stacks with different offsets. Added to the 

actuator position and details, several papers also compare single and multi-degree of freedom 

vibration suppression systems using piezoceramic actuators and there are different PPF design 

procedures that can be explored [27]. While a lot of the information on the placement of said 

actuators comes from the FEM analysis and the like, some papers like Gosh et al [18] hint at the 

use of H2-robust control when it comes to determining the optimum location of said actuator.  

 One issue that does arise ,however with active control is that energy is required to power 

the actuators. While piezoelectric actuators due to their inherent distributed nature are a perfect for 

the active control problem as noted by Gennaro [29], energy consumption and the general stability 

of the overall control scheme if one takes into account the loss of accuracy when measuring and 

estimating values from sensors, for example, angular velocity is not available for direct 

measurement and the estimation inherently carries uncertainty. However, piezoceramics are, from 

a design perspective, a fruitful choice for actuators and sensors due to their light weight, 

mechanical simplicity, efficient electric to mechanical energy conversion and large useable 

bandwidth as noted by Serafi et. Al [30] 
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3. SCOPE OF THESIS  

Therefore, the present scope of active control using piezoelectric and piezoceramic materials have 

been studied from various from modelling techniques, control algorithms, analysis and 

optimization methods and performance analysis. Focusing on linear control, an area that has not 

been explored is the question of combining feedback controls, specifically combination 

acceleration and position feedback, velocity and acceleration feedback and velocity and position 

feedback. The main areas covered in this thesis are as follows:  

1. Study combinations of two feedbacks (Acceleration & Velocity, Position & Velocity and 

Acceleration & Position) to design controllers that yield single closed loop frequency for 

specified closed loop damping ratio and a new solution technique of equating coefficients.  

2. Modifying the design to include frequencies other than the single closed loop frequency by 

the perturbation method, perturbing about a single closed loop frequency ωf. 

3. Search for a design that uses minimum energy required by the controller to suppress and 

control vibrations  

4. Search for the best combination; Acceleration & Velocity, Position & Velocity or 

Acceleration & Position. 
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4. DYNAMICS AND CONTROLS 

The following sections go into detail how the beam was modeled and the compensator and control 

system was designed for system response simulation.  

In this thesis, we consider flexural (bending) vibrations of linear elastic beams with n modes and 

is here restricted to Euler-Bernoulli beam. Initially, we consider a simply supported beam and later 

the model can be extended to other boundary conditions. Thus the differential equation is 

 
𝜕2

𝜕𝑥2 (𝐸𝐼
𝜕2𝑣

𝜕𝑥2) + 𝑚
𝜕2𝑣

𝜕𝑡2
= 𝑞(𝑥, 𝑡) (4.1) 

 

 

Figure 1: Uniform Beam 

First, considering free vibrations, with q=0 resulting in modes and frequencies, with a constant E 

we have;  

 𝐸𝐼
𝜕4𝑣

𝜕𝑥4
+ 𝑚

𝜕2𝑣

𝜕𝑡2
= 0 (4.2) 

With m=ρA; 
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 𝑣 = 𝜙(𝑥)𝑒𝑖𝜔𝑡 (4.3) 

 𝐸𝐼
𝑑4𝜙

𝑑𝑥4
− 𝑚𝜔2𝜙 = 0 (4.4) 

And taking 
𝑚𝜔2

𝐸𝐼
= 𝑎4 we have 

 
𝑑4𝜙

𝑑𝑥4
− 𝑎4𝜙 = 0 (4.5) 

This gives 

 𝜙(𝑥) = 𝐴1 sin 𝑎𝑥 + 𝐴2 cos 𝑎𝑥 + 𝐴3 sinh 𝑎𝑥 + 𝐴4 cosh 𝑎𝑥 (4.6) 

Applying a simply supported beams boundary conditions gives 

 𝜙(𝑥) = 𝐴1 sin
𝑛𝜋𝑥

𝐿
 (4.7) 

Therefore 𝑎 = 𝑎𝑛 =
𝑛𝜋

𝐿
 

 𝑎4 =
𝑛4𝜋4

𝐿4
=

𝑚𝜔𝑛
2

𝐸𝐼
 (4.8) 

 𝜔𝑛
2 =

𝑛4𝜋4𝐸𝐼

𝑚𝐿4
 (4.9) 

 

Next, for forced vibrations, we can expand:  
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 𝑣(𝑥, 𝑡) = ∑ 𝜉𝑛(𝑡) sin
𝑛𝜋𝑥

𝐿

∞

𝑛=1

 (4.10) 

And with the differential equation  

 𝐸𝐼
𝜕4𝑣

𝜕𝑥4
+ 𝑚

𝜕2𝑣

𝜕𝑡2
= 𝑞(𝑥, 𝑡) (4.11) 

We obtain the following from 10 and 11 

 ∑ 𝐸𝐼𝜉𝑛

𝑛4𝜋4

𝐿4
sin

𝑛𝜋𝑥

𝐿

∞

𝑛=1

+ ∑ 𝑚𝜉𝑛̈ sin
𝑛𝜋𝑥

𝐿

∞

𝑛=1

= 𝑞(𝑥, 𝑡) (4.12) 

By multiplying the above equation by sin
𝑗𝜋𝑥

𝐿
𝑑𝑥 and integrating from x=0 to x=L, we have  

 
𝑛4𝜋4𝐸𝐼

𝐿4

𝐿

2
 𝜉𝑗 + 𝑚

𝐿

2
 𝜉𝑗̈ = ∫ 𝑞(𝑥, 𝑡) sin

𝑗𝜋𝑥

𝐿
𝑑𝑥 

𝐿

0

 (4.13) 

By denoting  

 
2

𝐿
∫ 𝑞(𝑥, 𝑡) sin

𝑗𝜋𝑥

𝐿
𝑑𝑥 

𝐿

0

= 𝑄𝑗(𝑡) (4.14) 

And using  

𝑛4𝜋4𝐸𝐼

𝐿4
= 𝜔𝑗

2 

Which means we can re-write the previous equation as follows  

𝜉𝑗̈ + 𝜔𝑗
2𝜉𝑗 = 𝑄𝑗(𝑡) 
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Now, for a one degree of freedom approximation, with subscript s to denote the structure that is 

controlled and using 𝜉𝑠 for 𝜉𝑗 

𝜉𝑠̈ + 𝜔𝑠
2𝜉𝑠 =

𝑄𝑠(𝑡)

𝑚
 

By adding a modal damping and dropping subscript j to s, we obtain  

 𝜉̈ + 2𝜁𝑠𝜔𝑠𝜉̇ + 𝜔𝑠
2𝜉 = 𝑄0(𝑡) (4.15) 

 

It should be noted that similar equations can be obtained for other boundary conditions.  

 

 

4.1. ACCELERATION AND POSITIVE POSITION FEEDBACK 

4.1.1. Formulation of Positive Position Feedback (PPF) Controller 

For a Positive Position Feedback we get  

 𝜉̈ + 2𝜁𝑠𝜔𝑠𝜉̇ + 𝜔𝑠
2𝜉 = 𝑄1 + 𝑔𝜔𝑐

2𝜂 (4.1.1.1) 

And the compensator 

 𝜂̈ + 2𝜁𝑐𝜔𝑐𝜂̇ + 𝜔𝑐
2𝜂 = 𝜔𝑠

2𝜉 (4.1.1.2) 

 



12 

 

This results in the following transfer function  

 
𝜉(𝑠)

𝑄1(𝑠)
=

[𝑠2 + 2𝜁𝑐𝜔𝑐𝑠 + 𝜔𝑐
2]

[𝑠2 + 2𝜁𝑠𝜔𝑠𝑠 + 𝜔𝑠
2][𝑠2 + 2𝜁𝑐𝜔𝑐𝑠 + 𝜔𝑐

2] − 𝑔𝜔𝑠
2𝜔𝑐

2
 (4.1.1.3) 

Goh, Fanson and Caughey had only considered the positive position feedback (hereon referred to 

as PPF). Then they equated D(s) to two closed loop eigenvalues i.e. for a closed loop solution, the 

characteristic equation in Laplace domain was as follows  

 
𝐷(𝑠) = [𝑠2 + 2𝜁𝑠𝜔𝑠𝑠 + 𝜔𝑠

2][𝑠2 + 2𝜁𝑐𝜔𝑐𝑠 + 𝜔𝑐
2] + 𝑎𝑏𝑔𝜔𝑐

2(𝛼𝑠2 + (1 − 𝛼)𝜔𝑠𝑠)

= (𝑠2 + 2𝜁𝑓1𝜔𝑓1𝑠 + 𝜔𝑓1
2 )(𝑠2 + 2𝜁𝑓2𝜔𝑓2𝑠 + 𝜔𝑓2

2 ) 
(4.1.1.3.4) 

Our objective is also to design for a selected closed loop damping ratio. Then 𝜁𝑓1 = 𝜁𝑠𝑝 (known) 

and this means that we have 6 unknowns in the equation which are 𝜁𝑐, 𝜔𝑐, 𝜔𝑓1, 𝜔𝑓2 𝑎𝑛𝑑 𝑔. This 

means we have 6 unknowns and 4 equations that we obtain from equating the coefficients of s3, 

s2, s1 and s0 which again calls for the need of a solution by iteration similar to the procedure used 

by Goh, Fanson and Caughey.   

Then we modify the procedure and reduce the number of unknowns to 4 by exploring the 

possibility of  seeking two coincident closed loop eigenvalues. This, we equate to:  

 𝐷(𝑠) = (𝑠2 + 2𝜁𝑓𝜔𝑓𝑠 + 𝜔𝑓
2)2 (4.1.1.3.5) 

Then 𝜁𝑓+𝜔𝑓, are coincident closed loop frequencies with specific 𝜁𝑓1 = 𝜁𝑠𝑝.Comparing the 

coefficients for the different powers of s in the equations gives rise to the following equalities:  

 S3: 𝟐(𝜻𝒄𝝎𝒄 + 𝜻𝒔𝝎𝒔) = 𝟒𝜻𝒇𝝎𝒇 (4.1.1.3.6) 
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 S2: 𝝎𝒄
𝟐 + 𝟒𝜻𝒄𝜻𝒔𝝎𝒄𝝎𝒔 + 𝝎𝒔

𝟐 = 𝟐𝝎𝒇
𝟐 + 𝟒𝜻𝒇

𝟐𝝎𝒇
𝟐 (4.1.1.3.7) 

 S1: 𝟐𝝎𝒄𝝎𝒔(𝜻𝒔𝝎𝒄 + 𝜻𝒄𝝎𝒔) = 𝟒𝜻𝒇𝝎𝒇
𝟑 (4.1.1.3.8) 

 S0: −(−𝟏 + 𝒈)𝝎𝒄
𝟐𝝎𝒔

𝟐 = 𝝎𝒇
𝟒 (4.1.1.3.9) 

Applying the Routh-Hurwitz to determine the stability of the system the following conditions can 

be obtained for 𝐷 = 𝑎0𝑠4 + 𝑎1𝑠3 + 𝑎2𝑠2 + 𝑎3𝑠1 + 𝑎4𝑠0  

𝑎1𝑎2 − 𝑎0𝑎3

𝑎1
> 0 

𝑎1𝑎2𝑎3 − 𝑎0𝑎3
2 − 𝑎1

2𝑎4

𝑎1𝑎2 − 𝑎0𝑎3
> 0 

To obtain the required variables from the given input; comparing the coefficients for the different 

powers of s gives rise to the following equalities:  

Using ζs=0.01 and for values of ζf from 0.1 to 0.9, values for ζc, 𝜔𝑓/𝜔𝑠, 𝜔𝑐/𝜔𝑠 and gain g were 

found from Mathematica.  

Table 1: PPF Feedback Data for ζc, wc/ws and g for different ζf 

ζf ζc 𝜔𝑐/𝜔𝑠 g 
𝜔𝑓/𝜔𝑠 Settling 

Time (s) 

0.1 0.18684 1.017874 0.031332 1.000900137 6.8016 

0.2 0.363976 1.073589 0.125772 1.00190191 3.1911 

0.3 0.50928 1.161921 0.250649 1.0029046 2.1104 

0.4 0.621425 1.276303 0.376455 1.003907839 1.4388 

0.5 0.705319 1.410585 0.487476 1.004912347 1.1195 

0.6 0.767475 1.559792 0.57916 1.005918041 1.0606 

0.7 0.813687 1.720187 0.652595 1.006924358 0.8662 

0.8 0.84841 1.889052 0.710774 1.000900137 0.7916 

0.9 0.874863 2.06443 0.756857 1.00190191 0.7591 

4.1.1.2. Step Input Response  
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The step responses for ζf =0.1 and 0.9 are shown in the plots below and one can note that the 

response moves from about 9 oscillations to an overdamped scenario.  

 

Figure 2: PPF Feedback Step Response for ζf=0.1 

 

Figure 3: PPF Feedback Step Response for ζf=0.9 

4.1.1.3. Step Input Response  

To properly study the stability from a frequency domain perspective, the the bode plots for the 

transfer function were plotted and the following table has data for the gain margin and phase 

margin for the various cases listed.  
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Table 2: Gain and Phase Margins for Different ζf 

ζf Gain Margin (dB) Phase Margin 

0.1 Inf Inf 

0.2 Inf Inf 

0.3 Inf Inf 

0.4 Inf Inf 

0.5 Inf Inf 

0.6 Inf Inf 

0.7 Inf Inf 

0.8 Inf Inf 

0.9 Inf Inf 

The gain margin and phase margin were obtained using Matlab’s ‘margin()’ function and checked 

by hand as well and the infinite nature points towards the systems inherent stability. This means 

that a system with infinite gain and phase margin is robust and the margin to change and still 

remain with stable solutions is infinity.  

4.1.1.4.Perturbations from coincident closed loop frequency  

For ζf=0.2; the following sections display the data for the closed loop solutions with perturbations 

i.e. the closed loop transfer function has the denominator:  

 𝐷(𝑠) = (𝑠2 + 2𝜁𝑓(𝜔𝑓 + 𝛿)𝑠 + (𝜔𝑓 + 𝛿)2)2 (4.1.1.4.1) 

 
S3: ±𝟒𝜻𝒇𝜹 + 𝟒𝜻𝒇𝝎𝒇  

(4.1.1.4.2) 

 
S2: 𝟐𝜹𝟐 + 𝟒𝜻𝒇

𝟐𝜹𝟐 ± 𝟒𝜹𝝎𝒇 ± 𝟖𝜻𝒇
𝟐𝜹𝝎𝒇 + 𝟐𝝎𝒇

𝟐 + 𝟒𝜻𝒇
𝟐𝝎𝒇

𝟐 
(4.1.1.4.3) 

 
S1: ±𝟒𝜻𝒇𝜹𝟑 + 𝟏𝟐𝜻𝒇𝜹𝟐𝝎𝒇 ± 𝟏𝟐𝜻𝒇𝜹𝝎𝒇

𝟐 + 𝟒𝜻𝒇𝝎𝒔
𝟑 

(4.1.1.4.4) 
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S0: 𝜹𝟒 ± 𝟒𝜹𝟑𝝎𝒇 + 𝟔𝜹𝟐𝝎𝒇

𝟐 ± 𝟒𝜹𝝎𝒇
𝟑 + 𝝎𝒇

𝟒 
(4.1.1.4.5) 

The solutions are perturbed from the ωf=8.372494 values and the following table displays the 

controller parameters we obtain from solving the equations, the settling times in seconds and the 

gain and phase margins of the resulting step response and bode plots respectively.  

Table 3: PPF Feedback Values for Different Perturbations 

δ 

Variables (Positive δ) Variables (Negative δ) 

𝜔𝑐
𝜔𝑠

⁄  g 
ζc Settling 

Time(s) 
𝜔𝑐

𝜔𝑠
⁄  g 

ζc Settling 

Time (s) 

0 1.0736 0.1258 0.3640 3.1912 1.0736 0.1258 0.3640 3.1911 

0.1 1.0975 0.1228 0.3604 3.5771 1.0494 0.1280 0.3678 3.1381 

0.2 1.1212 0.1190 0.3571 3.6629 1.0250 0.1293 0.3719 3.4328 

0.3 1.1446 0.1146 0.3539 4.0690 1.0003 0.1297 0.3763 3.7650 

0.4 1.1679 0.1096 0.3510 4.7947 0.9753 0.1290 0.3810 4.1192 

0.5 1.1909 0.1040 0.3482 5.2171 0.9499 0.1271 0.3862 4.8012 

From the above data it seems as though adding negative perturbations is a more favorable design 

for the PPF controller. However, the controller energy required should be studied before any 

judgements are made.   

4.1.1.5. Energy Analysis   

The energy dissipated for the cases with different ζf are shown in the table below after they were 

calculated for each cycle using the equivalent damping formula −𝜋𝜔𝐶𝑒𝑞𝑋𝑝
2. It should be noted 

however that the calculations are an estimate since they were performed by hand and therefore the 

uncertainty and probability of errors in determining the amplitude and number of peaks (for larger 

cases) need to be taken into account. The errors due to determining the amplitude of the responses 

can be attributed to results’ behaviour. However, there is a steady rise in energy dissipated as 
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damping increases which makes intuitive sense since to damp faster, more energy would be 

required.  

Table 4: Controller Energy Required for PPF Feedback with Different Perturbations 

δ Energy Required (Positive δ) Energy Required (Negative δ) 

0 12.28245 12.28257 

0.1 10.6607 12.26578 

0.2 10.50745 12.36969 

0.3 9.760871 14.12837 

0.4 9.218997 15.41703 

0.5 8.885114 16.95767 

Therefore while negative perturbations may cause slightly higher damping and smaller settling 

times, since it requires more energy, the best possible design choice for the PPF controller is the 

case with a positive perturbation of 0.5.  

4.1.2. Formulation of Acceleration Feedback Controller 

We have the compensator 

 
𝜂̈ + 2𝜁𝑐𝜔𝑐𝜂̇ + 𝜔𝑐

2𝜂 = 𝑏𝜉̈ 
(4.1.2.1) 

This results in the following transfer function  

 

𝜉(𝑠)

𝑄1(𝑠)
=

[𝑠2 + 2𝜁𝑐𝜔𝑐𝑠 + 𝜔𝑐
2]

[𝑠2 + 2𝜁𝑠𝜔𝑠𝑠 + 𝜔𝑠
2][𝑠2 + 2𝜁𝑐𝜔𝑐𝑠 + 𝜔𝑐

2] + 𝑎𝑔𝜔𝑐
2(𝑏𝑠2)

 
(4.1.2.2) 

To obtain the required variables from the given input; comparing the coefficients for the different 

powers of s gives rise to the following equalities:  
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S3: 𝟐(𝜻𝒄𝝎𝒄 + 𝜻𝒔𝝎𝒔) = 𝟒𝜻𝒇𝝎𝒇 

(4.1.2.3) 

 
S2: (𝟏 + 𝒂𝒃𝒈)𝝎𝒄

𝟐 + 𝟒𝜻𝒄𝜻𝒔𝝎𝒄𝝎𝒔 + 𝝎𝒔
𝟐 = 𝟐𝝎𝒇

𝟐 + 𝟒𝜻𝒇
𝟐𝝎𝒇

𝟐 
(4.1.2.4) 

 
S1: 𝝎𝒄𝝎𝒔(𝟐𝜻𝒔𝝎𝒄 + 𝟐𝜻𝒄𝝎𝒔) = 𝟒𝜻𝒇𝝎𝒇

𝟑 
(4.1.2.5) 

 
S0: 𝝎𝒄

𝟐𝝎𝒔
𝟐 = 𝝎𝒇

𝟒 
(4.1.2.6) 

The values were calculated using Mathematica are listed below in Table 5. It can be noted that if 

the acceleration was taken as a negative feedback, all the values remain the same and the signs of 

the gain g change implying that for stable solutions the feedback has to be positive.  

Table 5: Acceleration Feedback Data for ζc, ωc/ωs and g for different ζf 

ζf ζc 
 

g 

Settling 

Time 

(s) 

0.1 0.19 1 0.0324 6.8016 

0.2 0.39 1 0.1444 3.1911 

0.3 0.59 1 0.3364 2.1104 

0.4 0.79 1 0.6084 1.4388 

0.5 0.99 1 0.9604 1.1195 

0.6 1.19 1 1.3924 1.0606 

0.7 1.39 1 1.9044 6.8292 

0.8 1.59 1 2.4964 3.4736 

0.9 1.79 1 3.1684 2.3439 

 

The data above shows the acceleration feedback’s unique behavior with ωc/ωs equaling 1 for all 

closed loop damping rations.  
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4.1.2.2. Step Input Response  

The step responses for ζf=0.1 and 0.9 individually are shown below from Figure 4 and Figure 5 

and the plots are followed by a plot showing all the step responses in Figure 6.  

 

Figure 4: Acceleration Feedback Step Response for ζf=0.1 

The plot above illustrated a system that settles completely under 10 seconds and although it has 9 

oscillations, i.e. peaks, the image below in Figure 5 shows a single peak and damping within about 

a second.  



20 

 

 

Figure 5: Acceleration Feedback Step Response for ζf=0.9 

The curves in Figure 6 illustrate the step responses for various damping ratios.  

 

Figure 6: Combined acceleration feedback step response 
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4.1.2.3.Bode Plots  

The bode plots for different closed loop damping ratios were run and the gain and phase margins 

obtained are listed below in Table 6. 

Table 6: Gain and Phase Margins for Different ζf 

ζf Gain Margin (dB) Phase Margin 

0.1 Inf Inf 

0.2 Inf Inf 

0.3 Inf Inf 

0.4 Inf Inf 

0.5 Inf Inf 

0.6 Inf Inf 

0.7 Inf Inf 

0.8 Inf Inf 

0.9 Inf Inf 

Since all the bode plots show infinite gain and phase margin, the bode plots all have similar shapes 

with only a minor shift as seen below in Figure 7 and Figure 8 for plots with closed loop damping 

ratio 0.1 and 0.9. The change can be viewed as the peak decreasing which is an expected change.  
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Figure 7: Acceleration Feedback Step Response for ζf=0.1 

 

Figure 8: Acceleration Feedback Step Response for ζf=0.9 
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4.1.2.4. Perturbations   

Perturbing the solutions from ωf= 8.3566 we obtain values listed in Table 7. 

Table 7: Acceleration Feedback Values for Different Perturbations 

δ 
𝜔𝑐

𝜔𝑠
⁄  g 

ζc Settling 

Time (s) 

Gain 

Margin  

Phase 

Margin  

0 1.0000 0.1444 0.3900 8.3566 3.4736 Inf 

0.1 1.0241 0.1681 0.3855 8.4566 2.8978 Inf 

0.2 1.0484 0.1910 0.3811 8.5566 3.3295 Inf 

0.3 1.0731 0.2130 0.3768 8.6566 3.4501 Inf 

0.4 1.0980 0.2344 0.3726 8.7566 3.5348 Inf 

0.5 1.1232 0.2550 0.3685 8.8566 3.6044 Inf 

 

4.1.2.5. Energy Analysis   

The controller energy required was calculated for perturbations from a fixed ωf= 8.3566 for a 

closed loop damping ratio of 0.2.  

Table 8: Controller Energy Required for Acceleration Feedback with perturbations 

δ 

Energy 

Required  

0 0.851123 

0.1 0.830212 

0.2 0.892351 

0.3 0.913331 

0.4 0.934554 

0.5 0.956021 

From the above data it is clear that for acceleration feedback, the ideal case with least controller 

energy required is with a 0.1 perturbation.  
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4.1.3. Formulation of Velocity Feedback Controller 

We have the compensator 

 
𝜂̈ + 2𝜁𝑐𝜔𝑐𝜂̇ + 𝜔𝑐

2𝜂 = 𝑏𝜔𝑠𝜉̇ 
(4.1.3.1) 

This results in the following transfer function  

 

𝜉(𝑠)

𝑄1(𝑠)
=

[𝑠2 + 2𝜁𝑐𝜔𝑐𝑠 + 𝜔𝑐
2]

[𝑠2 + 2𝜁𝑠𝜔𝑠𝑠 + 𝜔𝑠
2][𝑠2 + 2𝜁𝑐𝜔𝑐𝑠 + 𝜔𝑐

2] + 𝑎𝑔𝜔𝑐
2(𝑏𝜔𝑠𝑠)

 
(4.1.3.2) 

To obtain the required variables from the given input; comparing the coefficients for the different 

powers of s gives rise to the following equalities:  

 
S3: 𝟐(𝜻𝒄𝝎𝒄 + 𝜻𝒔𝝎𝒔) = 𝟒𝜻𝒇𝝎𝒇 

(4.1.3.3) 

 
S2: 𝝎𝒄

𝟐 + 𝟒𝜻𝒄𝜻𝒔𝝎𝒄𝝎𝒔 + 𝝎𝒔
𝟐 = 𝟐𝝎𝒇

𝟐 + 𝟒𝜻𝒇
𝟐𝝎𝒇

𝟐 
(4.1.3.4) 

 
S1: 𝝎𝒄𝝎𝒔(𝟐𝜻𝒔𝝎𝒄 + 𝒂𝒃𝒈𝝎𝒄 + 𝟐𝜻𝒄𝝎𝒔) = 𝟒𝜻𝒇𝝎𝒇

𝟑 
(4.1.3.5) 

 
S0: 𝝎𝒄

𝟐𝝎𝒔
𝟐 = 𝝎𝒇

𝟒 
(4.1.3.6) 

The values were calculated using Mathematica are listed below in Table 5. It can be noted that if 

the acceleration was taken as a negative feedback, all the values remain the same and the signs of 

the gain g change implying that for stable solutions the feedback has to be positive.  



25 

 

Table 9: Velocity Feedback Data for ζc, ωc/ωs and g for different ζf 

ζf ζc ωc/ωs g ωf/ωs 
Settling 

Time (s) 

0.1 
0.2067 0.8370 -0.0766 0.9149 0.2067 

0.1743 1.1990 0.0545 1.0950 0.1743 

0.2 
0.4677 0.6882 -0.4147 0.8296 0.4677 

0.3238 1.4640 0.1989 1.2100 0.3238 

0.3 
0.7786 0.5679 -1.1698 0.7536 0.7786 

0.4440 1.7806 0.3806 1.3344 0.4440 

0.4 
1.1445 0.4710 -2.5486 0.6863 1.1445 

0.5404 2.1542 0.5684 1.4677 0.5404 

0.5 
1.5696 0.3931 -4.8165 0.6269 1.5696 

0.6176 2.5891 0.7459 1.6091 0.6176 

0.6 
2.0576 0.3303 -8.3027 0.5747 2.0576 

0.6795 3.0891 0.9056 1.7576 0.6795 

0.7 
2.6116 0.2797 -13.4031 0.5288 2.6116 

0.7293 3.6574 1.0453 1.9124 0.7293 

0.8 
3.2340 0.2385 -20.5827 0.4884 3.2340 

0.7696 4.2965 1.1656 2.0728 0.7696 

0.9 
3.9267 0.2050 -30.3774 0.4528 3.9267 

0.8023 5.0082 1.2682 2.2379 0.8023 

The data above shows the acceleration feedback’s unique behavior with ωc/ωs equaling 1 for all 

closed loop damping rations.  

 

4.1.3.2. Step Input Response  

The step responses for ζf=0.1 and 0.9 individually are shown below in Figure 9 parts a through d, 

shown together to compare easily, and the plots are followed by figures showing all the step 

responses. The increase in closed loop damping expectedly reduces the number of oscillations 

however for the case of positive gain g, the system becomes overdamped while the negative gain 

case results in a single peak.  
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Figure 9a: Velocity Feedback Step Response 

for ζf=0.1 g<0 

 

Figure 9b: Velocity Feedback Step Response 

for ζf=0.1 g>0 

 

Figure 9c: Velocity Feedback Step Response 

for ζf=0.9 g<0 

 

Figure 9d: Velocity Feedback Step Response 

for ζf=0.9 g>0 

The images from Figure 9a to 9d illustrate the differences between changing the damping ratio for 

positive and negative gains.  

The combined step responses can be visualized using the figures below in Figure 10 and Figure 

11.  
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Figure 10: Velocity feedback step response for negative g 

 

Figure 11: Velocity feedback step response for positive g 

4.1.3.3. Bode Plots  

The bode plots for different closed loop damping ratios were run and the gain and phase margins 

obtained are listed below in Table 10. 
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Table 10: Gain and Phase Margins for Different ζf 

ζf 

Gain 

Margin 

dB 

Phase 

Margin 

0.1 
Inf Inf 

27.02999 Inf 

0.2 
Inf Inf 

34.84058 Inf 

0.3 
Inf Inf 

40.67 Inf 

0.4 
Inf Inf 

45.53664 Inf 

0.5 
Inf Inf 

49.82119 Inf 

0.6 
Inf Inf 

53.6546 Inf 

0.7 
Inf Inf 

57.16302 Inf 

0.8 
Inf Inf 

60.40004 Inf 

0.9 
Inf Inf 

63.40514 Inf 

Since all the bode plots show infinite gain and phase margin, the bode plots all have similar shapes 

with only a minor shift as seen below for plots with closed loop damping ratio 0.1 and 0.9. 

The images below from Figure 12a to d illustrate the bode plots for different damping ratios with 

positive and negative gain g. It can be noted that the positive g cases show non-infinite gain 

margins. As mentioned previously, since infinite gain margins allude to inherent stability and 

provide a robust design, this analysis helps with the choice of g which would preferably be 

negative.  
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Figure 12a: Velocity Feedback Bode Plot for 

ζf=0.1 g<0 

 

Figure 12b: Velocity Feedback Bode Plot for 

ζf=0.1 g>0 

 

Figure 12c: Velocity Feedback Bode Plot for 

ζf=0.9 g<0 

 

Figure 12d: Velocity Feedback Bode Plot for 

ζf=0.9 g>0 

Therefore, while the step response shows better damping for positive gains, the fact that the gain 

margins are too large and that the infinite gain margins offer a more robust stability, the negative 

gain g cases should be considered for future designs.  
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4.1.3.4. Perturbations   

Perturbing the solutions from ωf= 8.3566 we obtain values listed in Table 7. 

Table 11: Velocity Feedback Values for Different Perturbations 

δ 
𝜔𝑐

𝜔𝑠
⁄  g 

ζc 𝜔𝑓
𝜔𝑠

⁄  Settling 

Time (s) 

Gain 

Margin  

Phase 

Margin  

0 0.68818 -0.41474 0.46765 6.93233 4.56867 Inf Inf 

0.1 0.70817 -0.37187 0.46120 7.03233 5.39658 Inf Inf 

0.2 0.72846 -0.33171 0.45493 7.13233 6.23242 Inf Inf 

0.3 0.74903 -0.29407 0.44883 7.23233 7.43805 Inf Inf 

0.4 0.76988 -0.25878 0.44289 7.33233 9.02460 Inf Inf 

0.5 0.79103 -0.22567 0.43710 7.43233 10.60978 Inf Inf 

It is important to note that the gains were chosen as per the previous section’s conclusion on the 

negative gain g cases offering the most practical solution.  

4.1.3.5. Energy Analysis   

The controller energy required was calculated for perturbations from a fixed ωf= 5.7508 for a 

closed loop damping ratio of 0.2.  

Table 12: Controller Energy Required for Velocity Feedback only with perturbations 

δ AP 

0 0.032701 

0.1 0.033651 

0.2 0.034615 

0.3 0.071184 

0.4 0.032844 

0.5 0.032267 

From the above data it is clear that for acceleration feedback, the ideal case with least controller 

energy required is with a 0.5 perturbation. 
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4.1.4. Formulation of Combined Acceleration and Positive Position Feedback (PPF) 

Controller 

We discuss the formulation of the vibration controller for the one D.O.F mode. First a compensator 

is introduced; the compensator receives an input from the output of the structural system of 

equations. Then the compensator sends a signal of 𝑏𝑔𝜔𝑐
2𝜂 to the control actuator on the structure 

giving rise to a 2 D. O.F control equation as below  

 𝜉̈ + 2𝜁𝑠𝜔𝑠𝜉̇ + 𝜔𝑠
2𝜉 = 𝑄1 − 𝑏𝑔𝜔𝑐

2𝜂 (4.1.4.1) 

And the compensator with compensator gain ‘a’ 

 𝜂̈ + 2𝜁𝑐𝜔𝑐𝜂̇ + 𝜔𝑐
2𝜂 = (1 − 𝛼)𝑎𝜉̈ + 𝑎𝛼𝜔𝑠

2𝜉 (4.1.4.2) 

Therefore, when 𝛼=1, we have PPF feedback and when 𝛼 = 0 we have the acceleration feedback. 

This gives rise to a combination of acceleration and PPF feedback at other times and results in the 

following transfer function of 
𝜉(𝑠)

𝑄1(𝑠)
 

 
𝜉(𝑠)

𝑄1(𝑠)
=

[𝑠2 + 2𝜁𝑐𝜔𝑐𝑠 + 𝜔𝑐
2]

[𝑠2 + 2𝜁𝑠𝜔𝑠𝑠 + 𝜔𝑠
2][𝑠2 + 2𝜁𝑐𝜔𝑐𝑠 + 𝜔𝑐

2] − 𝑎𝑏𝑔𝜔𝑐
2((1 − 𝛼)𝑠2 + 𝛼𝜔𝑠

2)
 (4.1.4.3) 

Which results in the following equations when comparing coefficients (where a is the controller 

gain).  

 S3: 𝟐(𝜻𝒄𝝎𝒄 + 𝜻𝒔𝝎𝒔) = 𝟒𝜻𝒇𝝎𝒇 (4.1.4.4) 

 S2: (𝟏 + 𝒂𝒃𝒈(−𝟏 + 𝜶))𝝎𝒄
𝟐 + 𝟒𝜻𝒄𝜻𝒔𝝎𝒄𝝎𝒔 + 𝝎𝒔

𝟐 = 𝟐𝝎𝒇
𝟐 + 𝟒𝜻𝒇

𝟐𝝎𝒇
𝟐 (4.1.4.5) 
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 S1: 𝝎𝒄𝝎𝒔(𝟐𝜻𝒔𝝎𝒄 + 𝟐𝜻𝒄𝝎𝒔) = 𝟒𝜻𝒇𝝎𝒇
𝟑 (4.1.4.6) 

 S0: (𝟏 − 𝒂𝒃𝒈𝜶)𝝎𝒄
𝟐𝝎𝒔

𝟐 = 𝝎𝒇
𝟒 (4.1.4.7) 

Which gives the following criteria for stability  

 𝑔 >
−𝜁𝑐𝜔𝑐

3 − 4𝜁𝑐
2𝜁𝑠𝜔𝑐

2𝜔𝑠 − 4𝜁𝑐𝜁𝑠
2𝜔𝑐𝜔𝑠

2 − 𝜁𝑠𝜔𝑠
3

𝑎𝑏(−1 + 𝛼)𝜔𝑐
2(𝜁𝑐𝜔𝑐 + 𝜁𝑠𝜔𝑠)

 (4.1.4.8) 

 

𝑔

>
−𝜁𝑐𝜁𝑠𝜔𝑐

4 − 4𝜁𝑐
2𝜁𝑠

2𝜔𝑐
3𝜔𝑠 + 2𝜁𝑐𝜁𝑠𝜔𝑐

2𝜔𝑠
2 − 4𝜁𝑠𝜁𝑐

3𝜔𝑐
2𝜔𝑠

2 − 4𝜁𝑐𝜁𝑠
3𝜔𝑐

2𝜔𝑠
2 − 4𝜁𝑐

2𝜁𝑠
2𝜔𝑐𝜔𝑠

3 − 𝜁𝑠𝜁𝑐𝜔𝑠
4

𝑎𝑏𝜔𝑐(𝜁𝑐𝜔𝑐 + 𝜁𝑠𝜔𝑠)(−𝜁𝑠𝜔𝑐
2 + 𝛼𝜁𝑠𝜔𝑐

2 − 𝜁𝑐𝜔𝑐𝜔𝑠 + 2𝛼𝜁𝑐𝜔𝑐𝜔𝑠 + 𝛼𝜁𝑠𝜔𝑠
2)

 
(4.1.4.9) 

With the initial condition of ζs =0.01, the equations were solved in Mathematica to get the 

controller parameters and the closed loop frequency for different values of ζf  at different values 

of the ratio α. The following table lists the values of ζc, 
𝜔𝑓

𝜔𝑠
⁄ ,  

𝜔𝑐
𝜔𝑠

⁄ , g and the settling time of the 

unit step response in seconds for different ζf, all at α=0.5 since it provides a way to observe how the 

different required closed loop damping ratio affects all the design elements. 

Table 13: Acceleration & PPF Feedback Data for ζc, wc/ws and g for different ζf and α=0.5 

ζf ζc 
𝜔𝑓

𝜔𝑠
⁄  

𝜔𝑐
𝜔𝑠

⁄  g Settling time (s) 

0.1 0.09 1.09 2.31 1.46 7.136 

0.2 0.1 1.21 4.84 1.82 3.402 

0.3 0.1 1.33 7.97 1.9 1.733 

0.4 0.1 1.47 11.68 1.93 1.113 

0.5 0.1 1.61 16.02 1.95 0.764 

0.6 0.1 1.76 21.01 1.96 0.656 

0.7 0.1 1.91 26.69 1.96 0.567 

0.8 0.1 2.07 33.08 1.97 0.579 

0.9 0.1 2.24 40.19 1.97 0.450 
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It should be noted that for the equations to be solved efficiently, the ratios to the structure’s 

frequency were taken, i.e. 
𝜔𝑓

𝜔𝑠
⁄  and 

𝜔𝑐
𝜔𝑠

⁄ . Then a specific value of ωs was taken to be 1.33 Hz based 

on a first mode estimate. An increased closed loop system frequency can be observed with favorable results 

though it should be noted that the controller values of ωc would be significantly high. The behavior of the 

controller damping ratio ζc can be attributed to the ratio α=0.5 since plain acceleration feedback also 

displays similar behaviour in certain situations.  

4.1.4.2. Step Input Responses  

The step responses for α=0.5 ζf =0.1, 0.2, 0.3 and 0.9 are shown below in Figure 13 through Figure 

16.  

 

Figure 13: Acceleration & PPF Feedback Step Response for ζf=0.1 
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Figure 14: Acceleration & PPF Feedback Step Response for ζf=0.2 

 

Figure 15: Acceleration & PPF Feedback Step Response for ζf=0.3 
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Figure 16: Acceleration & PPF Feedback Step Response for ζf=0.9 

It can be clearly noted that the increased damping quite significantly decreases settling time and 

even the change from 0.1 to 0.2 causes the system to get damped in about half the time with 1/3rd 

of the oscillations. Now, in order to observe how the ratio α, affects the step responses, the 

following Table 14 lists the values for ζf=0.2.  

Table 14: Acceleration & PPF Feedback Data for ζc, ωf/ωs, ωc/ωs and g for different α with ζf=0.2 

α ζc 
𝜔𝑓

𝜔𝑠
⁄  

𝜔𝑐
𝜔𝑠

⁄  g 

Settling 

Time (s) 

0.1 0.39 1 0.99 -0.18 3.49044 

0.2 0.4 1 0.97 -0.25 3.488526 

0.3 0.41 1 0.94 -0.41 3.474544 

0.4 0.46 1 0.84 -1.02 3.511353 

0.5 0.1 1.21 4.84 1.82 3.402157 

0.6 0.32 1.01 1.21 0.5 3.233963 

0.7 0.35 1 1.13 0.29 3.209912 

0.8 0.36 1 1.1 0.2 3.209284 

0.9 0.36 1 1.08 0.15 3.498037 

The step responses for the above listed cases for α=0.1 and 0.9 are shown below in Figure 17 and 

Figure 18.  



36 

 

 

Figure 17: Acceleration & PPF Feedback Step Response for ζf=0.2 and α=0.1 

 

Figure 18: Acceleration & PPF Feedback Step Response for ζf=0.2 and α=0.9 

 

It can be observed that there isn’t a significant difference in the settling times or the number of 

peaks in the step response. It can be noted that the gains required shift from negative to positive as 
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the ratio increases, this implies that as the PPF feedback increases, the gain required shifts sign 

which is reflective of the behaviour of controller with only PPF feedback.  

4.1.4.3. Bode Plots  

As per the previous section, keeping α=0.5, the bode plots for different closed loop damping ratios 

were run and the gain and phase margins obtained are listed below in Table 15. 

Table 15: Gain and Phase Margins for Different ζf 

ζf Gain Margin (dB) Phase Margin 

0.1 -0.06816 -1.92508 

0.2 0.372526 16.83422 

0.3 2.316655 Inf 

0.4 4.298304 Inf 

0.5 4.763132 Inf 

0.6 5.874266 Inf 

0.7 9.072164 Inf 

0.8 8.35368 Inf 

0.9 10.64812 Inf 

At an initial glance, the Gain Margins fall within the reasonable range for the order of system at 

hand being less about 20 dB and the infinite Phase margin points towards robustness. With the 

case for ζf=0.2 however the phase margin is low and should preferably be at least 30 degrees. The 

negative values however imply that the system is unstable at that value.  

The bode plots for cases of interest are shown below from Figure 19 through Figure 22.  
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Figure 19: Acceleration & PPF Feedback Bode Plot for ζf=0.1 

The case above with negative gain and phase margin clearly shows an unstable system and while 

the bode plot below in Figure 20 has positive margins, the gain margin is smaller than the ideal.  

 

Figure 20: Acceleration & PPF Feedback Bode Plot for ζf=0.2 
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Figure 21: Acceleration & PPF Feedback Bode Plot for ζf=0.3 

The gain margin for the case shown below in Figure 22 shows a gain margin within the ideal range 

and for the case above, a suggestion would be to add a proportional gain to increase the gain 

margin.  

 

Figure 22: Acceleration & PPF Feedback Bode Plot for ζf=0.9 

Now, with ζf=0.2, the values for different values of ratio α are shown below in Table 16.  
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Table 16: Gain and Phase Margins for Different α and ζf=0.2 

α Gain Margin (dB) Phase Margin 

0.1 Inf Inf 

0.2 Inf Inf 

0.3 Inf Inf 

0.4 Inf Inf 

0.5 0.372526 16.83422 

0.6 32.27918 Inf 

0.7 Inf Inf 

0.8 Inf Inf 

0.9 Inf Inf 

From the data presented above, most of the cases reflect robust controller designs with infinite 

gain and phase margins showcasing the inherent stability of the system. For α=0.5 and 0.6 

however, the positive values still allude to a stable system however for practicality only the 0.5 

would need to have a proportional gain added. Adding any other gain would compromise the 

stability of the system though the performance of the system on it’s own displays favourable 

responses.  

 

Figure 23: Acceleration & PPF Feedback Bode Plot for ζf=0.2 and α=0.5 

 



41 

 

 

Figure 24: Acceleration & PPF Feedback Bode Plot for ζf=0.2 and α=0.6 

 

Figure 25: Acceleration & PPF Feedback Bode Plot for ζf=0.2 and α=0.9 

4.1.4.4.Perturbations from coincident closed loop frequency  

For ζf=0.2; the following sections display the data for the closed loop solutions with perturbations 

from ωf to (ωf +δ) The solutions are perturbed from the ωf=10.069 values and the following table 
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displays the controller parameters we obtain from solving the equations, the settling times in 

seconds and the gain and phase margins of the resulting step response and bode plots respectively.  

Table 17: Acceleration & PPF Feedback Values for Different Perturbations 

δ 
𝜔𝑐

𝜔𝑠
⁄  g 

ζc Settling 

Time (s) 

Gain 

Margin  

Phase 

Margin  

0 4.7735 1.8149 0.0989 4.5042 35.7004 Inf 

0.1 4.9410 1.8203 0.0965 4.6497 37.7786 Inf 

0.2 5.1071 1.8251 0.0943 4.7866 39.6612 Inf 

0.3 5.2720 1.8294 0.0923 4.9162 41.4233 Inf 

0.4 5.4358 1.8332 0.0904 5.0359 42.9706 Inf 

0.5 5.5986 1.8367 0.0886 5.1538 44.3571 Inf 

It is the clear the system remains stable albeit with high gain margins and it can be noted that 

higher perturbations lead to higher settling time meaning the optimal solution is the non-perturbed 

case.  

4.1.4.5. Energy Analysis  

The energy dissipated for the cases with different ζf are shown in the table below after they were 

calculated for each cycle using the equivalent damping formula −𝜋𝜔𝐶𝑒𝑞𝑋𝑝
2.  

Table 18: Energy Dissipated by the system 

ζf Energy Dissipated 

0.1 -0.2247 

0.2 -1.72125 

0.3 -4.74097 

0.4 -8.4115 

0.5 -11.2621 

0.6 -17.7416 

0.7 -21.355 

0.8 -43.475 
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In order to find the optimal solution for this type of feedback, one must look at the energy required, 

i.e. the energy from the controller. For the most optimal solution, from the previous sections, 

α=0.8, offers the smallest settling time for ζf=0.2. However, we are interested in how much energy 

the controller requires therefore, for a required closed loop damping ratio of 0.2, with different α 

the compensator 𝜂̈ + 2𝜁𝑐𝜔𝑐𝜂̇ + 𝜔𝑐
2𝜂 = (1 − 𝛼)𝑎𝜉̈ + 𝑎𝛼𝜔𝑠

2𝜉  has the following energy requirement. 

Note that the cases with ‘NaN’ represent values that are Not Available due to the response being 

unstable.  

Table 19: Controller Energy Required for Different α 

α Energy Required  

0.1 0.415848 

0.2 0.674834 

0.3 1.443654 

0.4 3.517051 

0.5 5.908508 

0.6 2.817024 

0.7 4.672384 

0.8 6.598122 

0.9 9.299874 

For the least energy required, we consider α=0.1. Adding Perturbations the following values are 

obtained:  

Table 20: Controller Energy Required for α=0.1 with perturbations 

δ 

Energy 

Required 

0 0.46176 

0.1 1.459495 

0.2 2.149146 

0.3 4.084385 

0.4 4.191573 

0.5 6.823103 
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Therefore, for a required damping ratio of 0.2, the acceleration and velocity feedback requires an 

α of 0.1 i.e. a dominant of Acceleration feedback, with no perturbation for the most optimal 

controller with parameters:  

𝝎𝒄
𝝎𝒔

⁄ = 𝟎. 𝟗𝟗, g=-0.18, ζc=0.39 

4.2. COMBINED ACCELERATION AND VELOCITY 

4.2.1.  Formulation of Acceleration and Velocity Feedback Controller  

We discuss the formulation of the vibration controller for the one D.O.F mode. First a compensator 

is introduced; the compensator receives an input from the output of the structural system of 

equations. Then the compensator sends a signal to the control actuator on the structure giving rise 

to a 2 D. O.F control equation as below  

 𝜉̈ + 2𝜁𝑠𝜔𝑠𝜉̇ + 𝜔𝑠
2𝜉 = 𝑄1 − 𝑏𝑔𝜔𝑐

2𝜂 (4.2.1.1) 

And the compensator  

 𝜂̈ + 2𝜁𝑐𝜔𝑐𝜂̇ + 𝜔𝑐
2𝜂 = 𝑎𝛼𝜉̈ + (1 − 𝛼)𝜔𝑠𝑎𝜉̇ (4.2.1.2) 

Therefore, when 𝛼=1, we have acceleration feedback and when 𝛼 = 0 we get velocity feedback. 

This gives rise to a combination of acceleration and velocity feedback at other times and results in 

the following transfer function  
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𝜉(𝑠)

𝑄1(𝑠)
=

[𝑠2 + 2𝜁𝑐𝜔𝑐𝑠 + 𝜔𝑐
2]

[𝑠2 + 2𝜁𝑠𝜔𝑠𝑠 + 𝜔𝑠
2][𝑠2 + 2𝜁𝑐𝜔𝑐𝑠 + 𝜔𝑐

2] + 𝑎𝑏𝑔𝜔𝑐
2(𝛼𝑠2 + (1 − 𝛼)𝜔𝑠𝑠)

 (4.2.1.3) 

 

Comparing the coefficients for the different powers of s for the above and required closed loop 

transfer function gives rise to the following equalities:  

 
S3: 𝟐(𝜻𝒄𝝎𝒄 + 𝜻𝒔𝝎𝒔) = 𝟒𝜻𝒇𝝎𝒇 

(4.2.1.4) 

 
S2: (𝟏 + 𝒂𝒃𝛼𝒈)𝝎𝒄

𝟐 + 𝟒𝜻𝒄𝜻𝒔𝝎𝒄𝝎𝒔 + 𝝎𝒔
𝟐 = 𝟐𝝎𝒇

𝟐 + 𝟒𝜻𝒇
𝟐𝝎𝒇

𝟐 
(4.2.1.5) 

 
S1: 𝝎𝒄𝝎𝒔(𝟐𝜻𝒔𝝎𝒄 + 𝒂𝒃(𝟏 − 𝛼)𝒈𝝎𝒄 + 𝟐𝜻𝒄𝝎𝒔) = 𝟒𝜻𝒇𝝎𝒇

𝟑 
(4.2.1.6) 

 
S0: 𝝎𝒄

𝟐𝝎𝒔
𝟐 = 𝝎𝒇

𝟐 
(4.2.1.7) 

 

The equations were put into Mathematica and the following values were obtained. Table 21 lists 

the values that were obtained and as seen with the velocity only feedback, there are 2 possible 

solutions for each ζf with positive and negative g values.  

 

 



46 

 

Table 21: Acceleration + Velocity Feedback Data for ζc, wc/ws and g for different ζf 

ζf ζc 
𝜔𝑓

𝜔𝑠
⁄  

𝜔𝑐
𝜔𝑠

⁄  g Settling time (s) 

0.1 
0.2323 0.8077 0.6524 -0.4739 9.7238 

0.1834 1.0382 1.0780 0.0501 6.2985 

0.2 
0.5964 0.6447 0.4157 -3.2970 5.9184 

0.3610 1.0824 1.1716 0.2056 2.9577 

0.3 
1.1068 0.5249 0.2755 -11.5348 4.5520 

0.5239 1.1282 1.2729 0.4408 1.8706 

0.4 
1.7791 0.4368 0.1908 -30.0110 4.5178 

0.6732 1.1758 1.3825 0.7339 1.2105 

0.5 
2.6223 0.3711 0.1377 -65.4396 3.7091 

0.8097 1.2250 1.5006 1.0671 0.8879 

0.6 
3.6415 0.3210 0.1030 -126.4613 4.2375 

0.9344 1.2758 1.6277 1.4260 0.8496 

0.7 
4.8393 0.2820 0.0795 -223.6484 3.9886 

1.0484 1.3282 1.7642 1.7992 0.6009 

0.8 
6.2174 0.2509 0.0630 -369.5040 4.4411 

1.1524 1.3822 1.9104 2.1776 0.6045 

0.9 
7.7768 0.2258 0.0510 -578.4598 4.4924 

1.2472 1.4376 2.0667 2.5544 0.5213 

 

The cases above are stable according to Routh Hurwitz criteria and both positive and negative 

gains yield stable solutions and the differences between them will be examined further in this 

chapter.  

4.2.2.  Step Input Responses  

The step responses for cases ζf=0.1 and 0.9 with both positive and negative gains are shown below 

from Figure 26 through Figure 29.  
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Figure 26: Acceleration & Velocity Feedback Step Response for ζf=0.1 g<0 

It can be noted that as the damping ratio increases, the step response goes from about 11 oscillation 

peaks to an almost overdamped case.  

 

Figure 27: Acceleration & Velocity Feedback Step Response for ζf=0.9 g<0 
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Figure 28: Acceleration & Velocity Feedback Step Response for ζf=0.1 g>0 

 

Figure 29: Acceleration & Velocity Feedback Step Response for ζf=0.9 g>0 

In order to observe the step responses more clearly, the response plots for negative and positive g 

were separated plotted below in Figure 30 and Figure 31  respectively.  
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Figure 30: Acceleration & Velocity  feedback step response for negative g 

 

Figure 31: Acceleration & Velocity feedback step response for positive g 

Since the damping is more in cases with positive g, that should be the preferred choice for future 

designs additionally it can be noted that negative gains are significantly larger in magnitude which 

is not practical.  
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Table 22: Acceleration & Velocity Feedback Data for ζc, wc/ws and positive g for different α 

α ζc 
𝜔𝑓

𝜔𝑠
⁄  

𝜔𝑐
𝜔𝑠

⁄  g 

Settling 

Time (s) 

0.1 0.33 1.19 1.41 0.21 2.74 

0.2 0.34 1.16 1.35 0.21 2.79 

0.3 0.34 1.13 1.29 0.21 2.84 

0.4 0.35 1.11 1.23 0.21 2.90 

0.5 0.36 1.08 1.17 0.21 2.96 

0.6 0.37 1.06 1.12 0.20 3.01 

0.7 0.38 1.04 1.08 0.18 3.06 

0.8 0.38 1.02 1.05 0.17 3.11 

0.9 0.39 1.01 1.02 0.16 3.43 

The step responses for the above listed cases for α=0.1 and 0.9 are shown below.  

 

Figure 32: Acceleration & PPF Feedback Step Response for ζf=0.2 and α=0.1 
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Figure 33: Acceleration & PPF Feedback Step Response for ζf=0.2 and α=0.9 

 

4.2.3.  Bode Plots 

Studying the frequency domain behaviour of this system gives infinite gain and phase margins for 

all cases except for finite gain margins for positive gains for α=0.1, 0.2 and 0.3 and finite and high 

phase margins for large negative gains for α=0.7 through 0.9.  

The following Table 23 lists the cases where the system shows non-infinite gain and phase margin. 

At first glance, it is clear that the gain margins are higher than the ideal and would therefore require 

an additional proportional gain to bring the margin down. While infinite phase margin in essence 

refers to a completely stable system, the higher phase margins would add in complications in 

physical implementation. From a controls perspective, the way to change the phase margin would 

be to introduce poles or zeroes however that would affect the stability of the system and is therefore 

not ideal.  
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Table 23: Settling Times, Gain and Phase Margin for Cases of Interest (Non infinite Gain and Phase 

Margins) 

α ζf ζc 
𝜔𝑓

𝜔𝑠
⁄  

𝜔𝑐
𝜔𝑠

⁄  g 
Settling time 

(s) 

Gain Margin 

(dB) 

Phase 

Margin 

0.1  

0.1 0.18 1.08 1.18 0.06 6.38 28.48 Inf 

0.2 0.33 1.19 1.41 0.21 2.74 36.45 Inf 

0.3 0.46 1.30 1.68 0.40 1.66 42.73 Inf 

0.4 0.56 1.41 1.99 0.61 1.04 48.30 Inf 

0.5 0.65 1.54 2.36 0.82 0.75 53.57 Inf 

0.6 0.72 1.66 2.77 1.00 0.50 58.91 Inf 

0.7 0.77 1.80 3.24 1.17 0.49 64.73 Inf 

0.8 0.82 1.94 3.76 1.33 0.30 72.51 Inf 

0.2 

0.1 0.18 1.07 1.15 0.06 6.42 30.55 Inf 

0.2 0.34 1.16 1.35 0.21 2.79 38.88 Inf 

0.3 0.47 1.25 1.57 0.42 1.71 46.23 Inf 

0.4 0.59 1.35 1.83 0.65 1.08 54.15 Inf 

0.3 
0.1 0.18 1.06 1.13 0.05 6.46 34.67 Inf 

0.2 0.34 1.13 1.29 0.21 2.84 43.77 Inf 

0.7 

0.7 8.83 0.15 0.02 -2514.73 7.42 Inf 135.46 

0.8 11.48 0.13 0.02 -4253.34 8.36 Inf 105.84 

0.9 14.48 0.12 0.01 -6772.53 8.53 Inf 93.75 

0.8 

0.1 0.35 0.52 0.27 -9.37 15.23 Inf 117.80 

0.2 1.20 0.31 0.09 -114.29 12.40 Inf 109.25 

0.3 2.59 0.21 0.05 -538.95 12.45 Inf 87.51 

0.4 4.53 0.16 0.03 -1657.34 12.11 Inf 72.21 

0.5 7.03 0.13 0.02 -3993.23 10.40 Inf 61.97 

0.6 10.08 0.11 0.01 -8220.05 12.30 Inf 54.96 

0.7 13.69 0.09 0.01 -15160.92 11.83 Inf 50.02 

0.8 17.85 0.08 0.01 -25788.58 13.38 Inf 46.44 

0.9 22.56 0.07 0.01 -41225.44 13.68 Inf 43.78 

0.9 

0.1 0.55 0.31 0.09 -103.98 26.67 Inf 45.44 

0.2 2.10 0.16 0.03 -1579.10 23.63 Inf 35.39 

0.3 4.69 0.11 0.01 -7907.13 24.61 Inf 28.35 

0.4 8.32 0.08 0.01 -24892.14 24.20 Inf 23.95 

0.5 12.98 0.07 0.00 -60659.89 20.85 Inf 21.18 

0.6 18.67 0.05 0.00 -125657.75 24.79 Inf 19.37 

0.7 25.41 0.05 0.00 -232654.77 23.83 Inf 18.15 

0.8 33.17 0.04 0.00 -396741.64 27.04 Inf 17.30 

0.9 41.98 0.04 0.00 -635330.68 27.63 Inf 16.68 
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If, observing the advantages of using positive gain from the step responses, we were to ignore the 

negative gain cases, only half the above listed cases are of importance. Therefore for α = 0.1 

through 0.3, the positive gain values do not result in infinite gain margin and while they are 

positive, implying stability, they are large in magnitude and therefore a proportional gain would 

be required to lower the gain margin for the physical system.  

A few bode plots for cases of interest are listed below in Figure 34 through Figure 39.  

 

Figure 34: Acceleration & Velocity Feedback Bode Plots for ζf=0.1 g<0  α=0.5 

The figure illustrated below in Figure 35 displays a robust design with infinite gain and phase 

margin.   
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Figure 35: Acceleration & Velocity Feedback Bode Plots for ζf=0.1 g>0 α=0.5 

Both cases with bode plots illustrated in Figure 35 and Figure 36 once again show robust designs 

with the listed gain and phase margins.  

 

Figure 36: Acceleration & Velocity Feedback Bode Plots for ζf=0.9 g>0  α=0.5 
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Figure 37: Acceleration & Velocity Feedback Bode Plots for ζf=0.9 g<0 α=0.5 

While Figure 37 displays a robust design, Figure 38 still shows a positive gain margin within a 

reasonable range.  

 

Figure 38: Acceleration & Velocity Feedback Bode Plots for ζf=0.1 g>0  α=0.1 
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Figure 39: Acceleration & Velocity Feedback Bode Plots for ζf=0.7 g<0 α=0.7 

For Varying values of α, i.e. the ratio between the 2 feedbacks, the results for ζf=0.2 and ζs=0.01 

are as follows:  

Table 24: Gain and Phase Margins for Different α 

α ζc 𝜔𝑓
𝜔𝑠

⁄  
𝜔𝑐

𝜔𝑠
⁄  g Settling Time 

(s) 

Gain Margin 

(dB) 

Phase 

Margin 

0.1 

0.48 0.81 0.66 -0.54 4.68 Inf Inf 

0.33 1.19 1.41 0.21 2.74 36.45 Inf 

0.2 

0.49 0.79 0.62 -0.74 4.83 Inf Inf 

0.34 1.16 1.35 0.21 2.79 38.88 Inf 

0.3 

0.51 0.75 0.57 -1.08 5.05 Inf Inf 

0.34 1.13 1.29 0.21 2.84 43.77 Inf 

0.4 

0.54 0.71 0.50 -1.76 5.38 Inf Inf 

0.35 1.11 1.23 0.21 2.90 Inf Inf 

0.5 

0.60 0.64 0.42 -3.30 5.92 Inf Inf 

0.36 1.08 1.17 0.21 2.96 Inf Inf 

0.6 

0.69 0.56 0.31 -7.49 6.84 Inf Inf 

0.37 1.06 1.12 0.20 3.01 Inf Inf 

0.7 

0.85 0.44 0.20 -22.87 8.58 Inf Inf 

0.38 1.04 1.08 0.18 3.06 Inf Inf 

0.8 

1.20 0.31 0.09 -114.29 12.40 Inf 109.25 

0.38 1.02 1.05 0.17 3.11 Inf Inf 

0.9 

2.10 0.16 0.03 -1579.10 23.63 Inf 35.39 

0.39 1.01 1.02 0.16 3.43 Inf Inf 

1 0.01000 0.02502 0.00063 -2.55E+06    NaN -0.601 2.45 
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The bode plots and step responses for the above values are shown below for negative gains:  

Therefore, we observe that all values of α<0.5 yield better settling times and as the value of the 

ratio increases, i.e. as the acceleration feedback increases, the responses are more ideal.  

 

Figure 40: Acceleration and Velocity Feedback with Alpha = 0.1 

 

Figure 41: Acceleration and Velocity Feedback with Alpha = 0.8 
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Figure 42: Acceleration and Velocity Feedback with Alpha = 0.9 

 

Figure 43: Acceleration and Velocity Feedback with Alpha = 1 

 

4.2.4.  Perturbations from coincident closed loop frequency  

Following the same methodology as in Section 5.4. the following table lists the values obtained 

for applying perturbations.  
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Table 25: Acceleration & Velocity Feedback Values for Different Perturbations 

δ 
𝜔𝑐

𝜔𝑠
⁄  g 

ζc Settling 

Time (s) 

Gain 

Margin  

Phase 

Margin  

0 
0.4157 -3.2970 0.5964 5.9206 Inf Inf 

1.1716 0.2056 0.3610 2.9576 Inf Inf 

0.1 
0.4313 -3.0382 0.5859 8.6062 Inf Inf 

1.1976 0.2291 0.3572 2.5935 Inf Inf 

0.2 
0.4471 -2.7988 0.5758 12.9216 Inf Inf 

1.2239 0.2513 0.3534 2.3193 Inf Inf 

0.3 
0.4633 -2.5773 0.5661 22.6101 Inf Inf 

1.2506 0.2722 0.3497 2.3843 Inf Inf 

0.4 
0.4797 -2.3719 0.5567 60.7334 Inf 72.6575 

1.2775 0.2920 0.3461 2.4280 Inf Inf 

0.5 
0.4964 -2.1814 0.5476 NaN -4.3982 13.1723 

1.3047 0.3106 0.3425 2.4456 Inf Inf 

If the negative gain ‘g’ values are not considered, adding perturbations does not change the stability 

of the system and adding a perturbation of 0.2 yields the best result i.e. the least settling time about 

0.6383 seconds faster than the case with no perturbation.  

4.2.5.  Energy Analysis  

Possible errors due to the solution method and approximation can attribute to the values listed in 

the table below. While in general the positive gain g cases require less energy, further leading to 

the conclusion that choosing appositive gain is more suitable, the energy does not increase as 

expected. Possible solutions to this would be to perform experiments to test the results.   

It can be noted that in Table 26 below, the negative gain g case dissipates more energy than the 

positive g, however it is more important to focus on the controller energy required.  
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Table 26: Energy Dissipated by the system 

ζf Energy Dissipated for positive g Energy Dissipated for negative g 

0.1 -0.00926 -0.12806 

0.2 -0.01001 -0.01496 

0.3 -0.00927 -0.0216 

0.4 -0.00983 -0.03727 

0.5 -0.00825 -0.06089 

0.6 -0.006 -0.0991 

0.7 -0.00553 -0.16791 

0.8 -0.00579 -0.25504 

At this stage, we can conclude that focusing on positive gains ‘g’ will be more fruitful. Focusing 

on the controller energy requirements for different values of the ratio α, we have the following 

results. Table 27: Controller Energy Required for Different α 

α Energy Required 

0.1 1.277079 

0.2 1.222735 

0.3 1.168391 

0.4 1.248379 

0.5 1.689383 

0.6 2.32228 

0.7 3.019624 

0.8 3.850375 

0.9 4.873613 

For the least amount of energy, the case for α=0.3 was perturbed and the energy results for those are 

as follows:  

Table 28: Controller Energy Required for α=0.3 with perturbations 

δ Energy Required 

0 0.00055825 

0.1 0.00051080 

0.2 0.00044892 

0.3 0.00039566 

0.4 0.00038296 

0.5 0.00037026 
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Therefore, for a required damping ratio of 0.2, the acceleration and velocity feedback requires an α of 0.3 

i.e. a dominant of acceleration feedback, with a perturbation of 0.5 for the most optimal controller with 

parameters:  

𝝎𝒄
𝝎𝒔

⁄ = 𝟏. 𝟒𝟐𝟗𝟒𝟗 , g=0.2726, ζc=0.32756 

 

4.3. COMBINED POSITIVE POSITION AND VELOCITY FEEDBACK 

4.3.1. Formulation of Positive Position (PPF) and Velocity Feedback Controller 

For a combined position and velocity compensator we have the compensator below 

 𝜂̈ + 2𝜁𝑐𝜔𝑐𝜂̇ + 𝜔𝑐
2𝜂 = α𝜔𝑠

2𝑎𝜉 + (1 − α)𝜔𝑠𝑎𝜉̇ (4.3.1.1) 

When 𝛽=1, we have position feedback and when 𝛽 = 0 we get velocity feedback but currently for 

the sake of a preliminary assessment, consider the ratio to be 0.5. Using the transfer function 

below:  

 
𝜉(𝑠)

𝑄1(𝑠)
=

[𝑠2 + 2𝜁𝑐𝜔𝑐𝑠 + 𝜔𝑐
2]

[𝑠2 + 2𝜁𝑠𝜔𝑠𝑠 + 𝜔𝑠
2][𝑠2 + 2𝜁𝑐𝜔𝑐𝑠 + 𝜔𝑐

2] − 𝑎𝑏𝑔𝜔𝑐
2(α𝜔𝑠

2 + (1 − α)𝜔𝑠𝑠)
 (4.3.1.2) 

To obtain the required variables from the given input; comparing the coefficients for the different 

powers of s gives rise to the following equalities:  

 
S3: 𝟐(𝜻𝒄𝝎𝒄 + 𝜻𝒔𝝎𝒔) = 𝟒𝜻𝒇𝝎𝒇 

(4.3.1.4) 

 
S2: 𝝎𝒄

𝟐 + 𝟒𝜻𝒄𝜻𝒔𝝎𝒄𝝎𝒔 + 𝝎𝒔
𝟐 = 𝟐𝝎𝒇

𝟐 + 𝟒𝜻𝒇
𝟐𝝎𝒇

𝟐 
(4.3.1.5) 
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S1: 𝝎𝒄𝝎𝒔(𝟐𝜻𝒔𝝎𝒄 + 𝒂𝒃(−𝟏 + 𝛂)𝒈𝝎𝒄 + 𝟐𝜻𝒄𝝎𝒔) = 𝟒𝜻𝒇𝝎𝒇

𝟑 
(4.3.1.6) 

 
S0: (𝟏 − 𝒈𝛂)𝝎𝒄

𝟐𝝎𝒔
𝟐 = 𝝎𝒇

𝟐 
(4.3.1.7) 

The values for ζc, wc/ws and g for different ζf were calculated using Mathematica and are listed 

below in Table 29. The following table lists the values of ζc, 
𝜔𝑓

𝜔𝑠
⁄ ,  

𝜔𝑐
𝜔𝑠

⁄ , g and the settling time 

of the unit step response in seconds for different ζf, all at α=0.5. 

Table 29: PPF and Velocity Feedback Data for ζc, wc/ws and g for different ζf 

ζf ζc 
𝜔𝑓

𝜔𝑠
⁄  

𝜔𝑐
𝜔𝑠

⁄  g 
Settling 

time (s) 

0.1 0.194 0.964 0.943 0.056 22.028 

0.2 0.394 0.926 0.915 0.245 12.146 

0.3 0.569 0.889 0.920 0.520 7.405 

0.4 0.710 0.854 0.949 0.816 4.923 

0.5 0.815 0.821 0.995 1.082 3.518 

0.6 0.892 0.789 1.051 1.298 3.159 

0.7 0.946 0.759 1.112 1.464 3.799 

0.8 0.985 0.730 1.176 1.590 5.232 

0.9 1.012 0.702 1.239 1.683 6.934 

4.3.2.  Step Input Responses 

The Step Input Response for α=0.5 for ζf=0.1 and 0.9 are shown below in Figure 44 and Error! 

Reference source not found. respectively. There is a significant amount of damping though the 

behavior at higher damping ratios is not the common overdamped response. While there is no 

overshoot for large damping ratios, there is significant amount of oscillations that take place.  
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Figure 44: PPF & Velocity Feedback Step Response for ζf=0.1 

 

Figure 45: PPF & Velocity Feedback Step Response for ζf=0.9 

The combined step responses are displayed below in Figure 46.  
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Figure 46: Position & Velocity Feedback combined step responses 

Now, in order to observe how the ratio α, affects the step responses, the following table lists the 

values for ζf=0.2.  

Table 30: PPF and Velocity Feedback Data for ζc, wc/ws and g for different α 

α ζc 
𝜔𝑓

𝜔𝑠
⁄  

𝜔𝑐
𝜔𝑠

⁄  g 

Settling 

Time (s) 

0.1 0.450 0.846 0.730 0.382 NaN 

0.2 0.434 0.864 0.774 0.349 NaN 

0.3 0.419 0.884 0.821 0.314 NaN 

0.4 0.405 0.905 0.869 0.279 35.566 

0.5 0.394 0.926 0.915 0.245 12.146 

0.6 0.385 0.946 0.958 0.213 7.033 

0.7 0.377 0.964 0.995 0.185 5.006 

0.8 0.372 0.979 1.027 0.162 4.010 

0.9 0.367 0.991 1.052 0.142 3.388 

 The step responses for α =0.1 and 0.9 are shown below. 
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Figure 47: PPF & Velocity Feedback Step Response for α =0.1 

 

Figure 48: PPF & Velocity Feedback Step Response for α =0.9 

 

4.3.3. Bode Plots  

The following tables have data for the gain margin and phase margin for the various cases listed, 

all obtained from the bode plots.  
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Table 31: Gain and Phase Margin for Different ζf 

ζf Gain Margin (dB) Phase Margin 

0.1 Inf Inf 

0.2 36.438 Inf 

0.3 38.076 Inf 

0.4 40.079 Inf 

0.5 41.905 Inf 

0.6 43.455 Inf 

0.7 44.781 Inf 

0.8 45.917 Inf 

0.9 46.871 Inf 

Bode Plots (for cases of interest) are shown below, while the case with ζf=0.1 has infinite gain and 

phase margin and therefore inherent stability, the other cases still have positive gain margins 

which, as with the case of Chapter 6, are still large and would therefore require adding some 

proportional controller to reduce the gain margin.  

 

Figure 49: PPF & Velocity Feedback Bode Plot for ζf=0.1 
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Figure 50: PPF & Velocity Feedback Bode Plot for ζf=0.9 

Now, varying α with ζf=0.2 and observing the frequency responses gives the values listed in the 

following table.  

Table 32: Gain and Phase Margin for Different α 

α Gain Margin (dB) Phase Margin 

0.1 55.100 Inf 

0.2 54.114 Inf 

0.3 52.730 Inf 

0.4 24.503 Inf 

0.5 36.438 Inf 

0.6 Inf Inf 

0.7 Inf Inf 

0.8 Inf Inf 

0.9 Inf Inf 

We do observe that higher values of α give more robust and desirable systems with infinite gain 

and phase margin. Once again, the gain margins are larger than desired and should the cases be 

considered for implementation, proportional gains would have to be added to reduce the gain 

margin. The following figures illustrate the bode plots for few cases of interest.  
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Figure 51: PPF & Velocity Feedback Bode Plot for α=0.1 

Both gain margins listed in Figure 51 and Figure 52 are higher than the ideal and call for the use 

of a proportional gain to lower the margin during physical implementation. Figure 53 however 

shows a robust design.  

 

Figure 52: PPF & Velocity Feedback Bode Plot for α=0.5 

 



69 

 

 

Figure 53: PPF & Velocity Feedback Bode Plot for α=0.6 

4.3.4.  Perturbations from coincident closed loop frequency  

The following table displays the controller parameters we obtain from solving the equations, the 

settling times in seconds and the gain and phase margins of the resulting step response and bode 

plots respectively.  

Table 33: PPF & Velocity Feedback Values for Different Perturbations 

δ 
𝜔𝑐

𝜔𝑠
⁄  g 

ζc Settling 

Time (s) 

Gain 

Margin  

Phase 

Margin  

0 0.9151 0.2446 0.3938 9.7000 Inf Inf 

0.1 0.9410 0.2522 0.3881 8.2610 Inf Inf 

0.2 0.9665 0.2570 0.3828 7.1741 Inf Inf 

0.3 0.9916 0.2592 0.3779 6.1408 Inf Inf 

0.4 1.0164 0.2592 0.3734 5.4275 Inf Inf 

0.5 1.0410 0.2571 0.3692 4.7530 Inf Inf 

For the PPF and Velocity Feedback controller, adding perturbations improves the response as 

opposed to the 2 other designs discussed previously. Therefore, an optimal solution for the PPF 

and velocity feedback controller would be one with a 0.5 perturbation added.  
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4.3.5.  Energy Analysis  

Apart from the ζf=0.5 case, the energy dissipated increases as ζf increases, which, as with Chapter 

5, is the expected and desirable condition.  

Table 34: Energy Dissipated by the system 

ζf Energy Dissipated 

0.1 -0.02373 

0.2 -0.0268 

0.3 -0.02786 

0.4 -0.11299 

0.5 -0.07548 

0.6 -0.51749 

0.7 -0.60941 

0.8 -0.91186 

Focusing on the controller energy requirements for different values of the ratio α, we have the following 

results.  

Table 35: Controller Energy Required for Different α 

α Energy Required 

0.1 2.606401 

0.2 3.098777 

0.3 3.631805 

0.4 4.398517 

0.5 5.258792 

0.6 6.221204 

0.7 7.302601 

0.8 8.459555 

0.9 9.395156 

For the least amount of energy, the case for α=0.1 was perturbed and the energy results for those are 

as follows in Table 36 with the lowest case marked in bold.   
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Table 36: Controller Energy Required for α=0.1 with perturbations 

δ Energy Required 

0 2.616847 

0.1 2.722336 

0.2 2.497848 

0.3 2.456541 

0.4 2.315123 

0.5 2.35858 

Therefore, for a required damping ratio of 0.1, the position and velocity feedback requires an α of 0.1 i.e. a 

dominant of velocity feedback, with 0.4 perturbation the most optimal controller with parameters:  

𝝎𝒄
𝝎𝒔

⁄ = 𝟎. 𝟕𝟑𝟎𝟐𝟒 , g=0.38835, ζc=0.44978 
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5. COMPARISON & DISCUSSION 

The following Table 37 displays the settling times for various cases listed previously.  

Table 37: Settling Times 

ζf PPF 
Accelera

tion 

Velocity 

(-ve g) 

Velocity 

(+ve g) 

Accelera

tion + 

PPF  

Accelera

tion + 

Velocity 

(-ve g) 

Accelera

tion + 

Velocity 

(+ve g) 

PPF + 

Velocity 

0.1 6.8046 6.8292 7.8416 6.3296 7.136 9.7238 6.2985 22.0278 

0.2 3.1912 3.4736 4.5686 2.6918 3.402 5.9184 2.9577 12.1455 

0.3 2.1104 2.3439 3.1858 1.6191 1.733 4.552 1.8706 7.4051 

0.4 1.4388 1.7196 2.5 1.0126 1.113 4.5178 1.2105 4.9228 

0.5 1.1195 1.3925 2.2182 0.7225 0.764 3.7091 0.8879 3.5181 

0.6 1.0606 1.0898 2.3859 0.4834 0.656 4.2375 0.8496 3.1589 

0.7 0.8662 1.1022 2.1478 0.4712 0.567 3.9886 0.6009 3.7992 

0.8 0.7916 0.8432 2.3065 0.2938 0.579 4.4411 0.6045 5.232 

0.9 0.7591 0.9815 2.2593 0.3541 0.450 4.4924 0.5213 6.9336 

Below in Figure 54, the settling times from the step responses of all the above listed cases can be 

viewed. The best possible solutions in comparison at this stage is the Acceleration & Velocity 

Feedback with positive gain (g) and the velocity feedback with positive g.  
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Figure 54: Comparison of Settling Times 

Observing them at a closer range gives the following plot.  
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Figure 55: Comparison of Settling Times (Closer Range) 

From the comparison above, we deduce that the responses are best for two types of feedback 

however, trying the cases with different combination ratios we get:  

 

Figure 56: Combined Settling Times With varying feedback ratios 

When we observe at a closer range we see 
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Figure 57: Combined Settling Times With varying feedback ratios (closer range) 

Therefore, the best outcome still comes from the Velocity only feedback although it is closely 

followed by the Acceleration and Velocity combined feedback (with positive gain) and the PPF. 

Though the Acceleration and PPF feedback consistently shows fast damping.  

Now, comparing the controller input energy required for different alpha values for closed loop 

damping ratio of 0.2 we get the plot shown in Figure 58.  
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Figure 58: Comparing Controller Energy Required for different α 

It is very clear that the acceleration and velocity feedback controller has the least energy 

requirement by a sizable margin. In order to obtain a visual representation of how the perturbations 

affect the best cases from varying the ratio of feedback, Figure 59 illustrates the trends. The 

behaviors of the controllers can be attributed to the elements that make up the combined feedback. 

Noting that the velocity feedback alone had the least energy requirement when compared to PPF 

feedback only which had the highest energy requirement, and acceleration feedback which fell in 

between, the behavior of the combined feedbacks as the ratio alphas are changed becomes 

understandable. Similarly, as the perturbation changes, the acceleration and position feedback 

shows a considerable range in energy requirements. This implies that when considering such 

controllers, it is very important to consider all the variables since small changes can affect the 

energy requirements.  
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Figure 59: Controller Energy Required for perturbed solutions 

 We definitely notice the advantages and flexibility of combined feedback controllers. Out of all 

the simulated cases, the Acceleration and PPF combined feedback offers faster damping 

consistently however, it also has the highest energy requirement. The advantages of using a 

combined feedback include flexibility and the damping achieved is on par with the largest damping 

achieved with individual feedback. For the Acceleration and Velocity Controller, all cases resulted 

in stable solutions with either both infinite gain and phase margins or positive gain margins and 

infinite phase margins. It should also be noted that the combined cases perform well in terms of 

both energy required and settling times when compared to the individual inputs. That fact added 

to the large energy dissipated would affect the choice of implementing it.  

Comparing all the alternatives shows that the best option is the Acceleration and Velocity feedback 

system with 0.3 acceleration feedback, and 0.7 velocity feedback and a perturbation of 0.5. This 

controller also offers a system which has all robust cases for all ratios and damping ratios, i.e. 
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offering more robust stable solutions and it has the lowest energy required and performs well in 

terms of damping the system fast.  

The reason why this discussion focuses on combined feedback is because as mentioned in the 

background, there are errors that can arise with sensors collecting various data when operating 

under various situations. If the situations can be modeled according to operating conditions or 

system parameters, the ratio choosing how much feedback i.e. how much acceleration and velocity 

feedback is considered in the compensator, can be changed. The change can also be based on how 

much damping is required since that data also exists and data on the cases where certain 

combinations result in non-converging and unstable systems is also now available through this 

research. Multiple parameters and design constraints can potentially be added in via the ratio and 

knowing the stable range and the knowledge of how the system behaves to different inputs gives 

a lot of insight into the design of this versatile controller.  

With flexibility offered and with solutions that offer high damping at faster speeds, it might be 

useful to consider the applications of these in non-linear conditions and different beam 

approximations and different boundary conditions.  
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6. CONCLUSION  

With this thesis, several controllers were designed with multiple combined feedbacks; positive 

position & acceleration feedback, acceleration & velocity feedback and position & velocity 

feedback. This thesis thoroughly explored the stability, and stability ranges of the various systems 

in the frequency domain, concluding that the method used to determine combination controller 

parameters resulted in robust systems with infinite gain and phase margins implying inherently 

stable systems. The system responses were simulated for various required closed loop damping 

ratios and the cases were also tested for when the closed loop frequency was perturbed to find 

other optimal solutions. Since the optimal condition would depend on the application and 

feasibility itself in the real physical domain, a quick analysis shows how each system would behave 

to different types of combinations. It can be concluded that the Acceleration and Velocity feedback 

system with 0.3 acceleration feedback, and 0.7 velocity feedback and a perturbation δ of 0.5 is an 

optimal controller offering robust stability and high damping. The data in this thesis can be used a 

guide when designing compensators for damping systems modeled as simply supported Euler-

Bernoulli beams since all the ranges provided can give a good estimate on what to expect. The 

next stage would be to consider experimentally verifying the data and considering non-linear 

applications to expand our knowledge on these active controllers. Therefore, in order to summarize 

the findings; this thesis presented 4 new elements:  

1.  Designed and studied the combinations of two feedbacks; Acceleration & Velocity, 

Position & Velocity and Acceleration & Position, which has not been previously explored 

at all. The controllers were designed using a new solution technique of equations transfer 
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function denominator coefficients of ‘s’, to yield single closed loop frequency for specified 

closed loop damping ratio and they were compared to the bode plot design to analyze 

stability in the frequency domain.  

2. The design was also modified to include frequencies other than the single closed loop 

frequency by the perturbation method, where a perturbation about a single closed loop 

frequency ωf was introduced. The thesis research also simulated the settling time, gain 

margin and phase margin to visualize how the perturbations affect the time domain 

response. It was noted that the different controllers had different responses and behaviors 

to the perturbations.  

3. The minimum controller energy to suppress and control vibrations was also calculated. In 

order of worst to best, i.e. most energy to least energy required, for a required damping 

ratio ζf of 0.2; 

• Combined Position & Velocity Feedback requires an α of 0.1 i.e. a dominant of 

Velocity Feedback, with a perturbation δ of 0.4 the most optimal controller with 

parameters:  

𝝎𝒄
𝝎𝒔

⁄ = 𝟎. 𝟕𝟑𝟎𝟐𝟒 , g=0.38835, ζc=0.44978 

• Combined Acceleration & Position Feedback requires an α of 0.1 i.e. a dominant 

of Acceleration feedback, with no perturbation for the most optimal controller with 

parameters:  

𝝎𝒄
𝝎𝒔

⁄ = 𝟎. 𝟗𝟗, g=-0.18, ζc=0.39 
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• Combined Acceleration & Velocity Feedback requires an α of 0.3 i.e. a dominant 

of acceleration feedback, with a perturbation δ of 0.5 for the most optimal controller 

with parameters:  

𝝎𝒄
𝝎𝒔

⁄ = 𝟏. 𝟒𝟐𝟗𝟒𝟗 , g=0.2726, ζc=0.32756 

4. The best combination was found to be Acceleration and Velocity feedback system with 0.3 

acceleration feedback, and 0.7 velocity feedback and a perturbation δ of 0.5 offering robust 

stability and high damping 
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APPENDIX A 

A.1. 1. Acceleration & PPF feedback with varying closed loop damping ratio 

 

Figure 60: Acceleration & PPF for Alpha 0.5 and ζf=0.1 

 

Figure 61: Acceleration & PPF for Alpha 0.5 and ζf=0.2 

 



83 

 

 

Figure 62: Acceleration & PPF for Alpha 0.5 and ζf=0.3 

 

Figure 63: Acceleration & PPF for Alpha 0.5 and ζf=0.4 
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Figure 64: Acceleration & PPF for Alpha 0.5 and ζf=0.5 

 

Figure 65: Acceleration & PPF for Alpha 0.5 and ζf=0.6 
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Figure 66: Acceleration & PPF for Alpha 0.5 and ζf=0.7 

 

Figure 67: Acceleration & PPF for Alpha 0.5 and ζf=0.8 
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Figure 68: Acceleration & PPF for Alpha 0.5 and ζf=0.9 

A.1. 2 Acceleration & PPF feedback with varying α ratio  

 

Figure 69: Acceleration & PPF for ζf=0.2 and α=0.1 
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Figure 70: Acceleration & PPF for ζf=0.2 and α=0.2 

 

Figure 71: Acceleration & PPF for ζf=0.2 and α=0.3 
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Figure 72: Acceleration & PPF for ζf=0.2 and α=0.4 

 

Figure 73: Acceleration & PPF for ζf=0.2 and α=0.5 
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Figure 74: Acceleration & PPF for ζf=0.2 and α=0.6 

 

Figure 75: Acceleration & PPF for ζf=0.2 and α=0.7 
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Figure 76: Acceleration & PPF for ζf=0.2 and α=0.8 

 

Figure 77: Acceleration & PPF for ζf=0.2 and α=0.9 
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A.2 Acceleration & PPF feedback with varying perturbations 

 

Figure 78: Acceleration & PPF Bode δ = 0.1 

 

Figure 79: Acceleration & PPF Step δ = 0.1 
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Figure 80: Acceleration & PPF Bode δ = 0.2 

 

Figure 81: Acceleration & PPF Step δ = 0.2 
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Figure 82: Acceleration & PPF Bode δ = 0.3 

 

Figure 83: Acceleration & PPF Step δ = 0.3 
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Figure 84: Acceleration & PPF Bode δ = 0.4 

 

Figure 85: Acceleration & PPF Step δ = 0.4 
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Figure 86: Acceleration & PPF Bode δ = 0.5 

 

Figure 87: Acceleration & PPF Step δ = 0.5 
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A.2.1.  Acceleration & velocity feedback with varying ratio α 

 

Figure 88: Acceleration and Velocity Feedback with ζf =0.2 ζs =0.01 and α = 0.1 

 

Figure 89: Acceleration and Velocity Feedback with ζf =0.2 ζs =0.01 and α = 0.2 
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Figure 90: Acceleration and Velocity Feedback with ζf =0.2 ζs =0.01 and α = 0.3 

 

Figure 91: Acceleration and Velocity Feedback with ζf =0.2 ζs =0.01 and α = 0.4 
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Figure 92: Acceleration and Velocity Feedback with ζf =0.2 ζs =0.01 and α = 0.5 

 

Figure 93: Acceleration and Velocity Feedback with ζf =0.2 ζs=0.01 and α = 0.6 
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Figure 94: Acceleration and Velocity Feedback with ζf =0.2 ζs=0.01 and α = 0.7 

 

Figure 95: Acceleration and Velocity Feedback with ζf =0.2 ζs =0.01 and α = 0.8 
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Figure 96: Acceleration and Velocity Feedback with ζf =0.2 ζs =0.01 and α = 0.9 

 

Figure 97: Acceleration and Velocity Feedback with ζf =0.2 ζs =0.01 and α = 1 

 

 



101 

 

A.3.1. Position & velocity plots  

 

Figure 98: Position & Velocity Feedback Bode Plots and Step Response for ζf=0.1 

 

Figure 99: Position & Velocity Feedback Bode Plots and Step Response for ζf=0.2 
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Figure 100: Position & Velocity Feedback Bode Plots and Step Response for ζf=0.3 

 

Figure 101: Position & Velocity Feedback Bode Plots and Step Response for ζf=0.4 
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Figure 102: Position & Velocity Feedback Bode Plots and Step Response for ζf=0.5 

 

Figure 103: Position & Velocity Feedback Bode Plots and Step Response for ζf=0.6 
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Figure 104: Position & Velocity Feedback Bode Plots and Step Response for ζf=0.7 

 

Figure 105: Position & Velocity Feedback Bode Plots and Step Response for ζf=0.8 
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Figure 106: Position & Velocity Feedback Bode Plots and Step Response for ζf=0.9 
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